The tenets of coordination chemistry enable researchers to design and develop nanostructured materials based on metal−organic frameworks (MOFs). Herein, for the first time, we applied the Schiff base system to MOF derivatives as a strategy for the heteroatom introduction into carbon-based metal oxides toward electrochromic applications. The presented Ni-MOF thin films based on Schiff base ligands were prepared by a facile and economical reductive electrosynthesis approach, facilitating the scalable fabrication of large-size electrochromic films derived from MOFs. After the pyrolysis, the desired N-doped NiO@C (N-C@NiO) films can achieve a high cycling stability (500 cycles with 7% contrast attenuation) and coloration efficiency (80.18 cm 2 /C) via different pyrolysis procedures. In addition, the one-step fabricated N-C@NiO shows an excellent ability of contrast modulation (68%@580 nm) with merely 3.6% transmittance at the colored state. These improvements in electrochromic properties are attributed to hierarchical porous heterostructures and influenced by the N/C ratio and C−N bonding configuration, indicating that N-C@NiO systems derived from Schiff base MOFs are promising for low-transmittance displays.
Responsive chromogenic materials have attracted increasing interest among researchers; however, up until now, few materials have exhibited multifunctional chromogenic properties. The coordination polymers (CPs) provide intriguing platforms to design and construct multifunctional materials. Here, a multifunctional photo/electricity responsive CP named Zn−Oxv, which is based on the “extended viologen” (ExV) ligand, was synthesized. The Zn−Oxv exhibited reversible photochromism, photomodulated fluorescence, electrochromism and electrofluorochromism. Furthermore, we prepared Zn−Oxv thin films and investigated electrochromic (EC) properties of viologen−based CPs for the first time. Zn−Oxv thin films showed excellent EC performance with a rapid switching speed (both coloring and bleaching time within 1 s), high coloration efficiency (102.9 cm2/C) and transmittance change (exceeding 40%). Notably, the Zn−Oxv is by far the fastest CP EC material based on redox−active ligands ever reported, indicating that the viologen−based CPs could open up a new field of materials for EC applications. Therefore, viologen−based CPs are attractive candidates for the design of novel multi−responsive chromogenic materials and EC materials that could promise creative applications in intelligent technology, dynamic displays and smart sensors.
The Friedlander reaction is the most commonly used method to synthesis substituted quinolines, the essential intermediates in the medicine industry. A facile one-pot approach for synthesizing substituted quinolines by the reaction of isoxazoles, ammonium formate-Pd/C, concentrated sulfuric acid, methanol and ketones using Friedlander reaction conditions is reported. Procedures for the synthesis of quinoline derivatives were optimized, and the yield was up to 90.4%. The yield of aromatic ketones bearing electron-withdrawing groups was better than the ones with electron-donating substituents. The structures of eight substituted quinolines were characterized by MS, IR, H-NMR and 13CNMR, which were in agreement with the expected structures. The mechanism for the conversion was proposed, which involved the Pd/C catalytic hydrogen transfer reduction of unsaturated five-membered ring of isoxazole to produce ortho-amino aromatic ketones. Then the nucleophilic addition of with carbonyl of the ketones generated Schiff base in situ, which underwent an intermolecular aldol reaction followed by the elimination of H2O to give production of substituted quinolines. This new strategy can be readily applied for the construction of quinolines utilizing a diverse range of ketones and avoids the post-reaction separation of the o-amino aromatic ketone compounds. The conventionally used o-amino aromatic ketone compounds in Friedlander reaction to prepare substituted quinoline are laborious to synthesize and are apt to self-polymerize. While oxazole adopted in this work can be prepared at ease by the condensation of benzoacetonitrile and nitrobenzene derivatives under the catalysis of a strong base. Moreover, the key features of this protocol are readily available starting materials, excellent functional group tolerance, mild reaction conditions, operational simplicity, and feasibility for scaling up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.