This paper is devoted to solving the problem of how to comprehensively control coal seam gas and hydrogen sulfide in the mining face, distributed from the coal seam in abandoned oil wells in coal mining resource areas. The abandoned oil wells of Ma tan 30 and Ma tan 31 in the No. I0104105 working face of the Shuang Ma Coal Mine were taken as examples. Through parameter testing, gas composition analysis, field investigation at the source distribution, and the influence range of gas and hydrogen sulfide in coal seam in the affected range of the abandoned oil wells were studied. The results show that the coal-bearing strata in Shuang Ma coal field belong to the coal–oil coexistence strata, and the emission of H2S gas in the local area of the working face is mainly affected by closed and abandoned oil wells. Within the influence range of the abandoned oil wells, along the direction of the working face, the concentration of CH4 and H2S gas in the borehole increases as you move closer to the coal center, and the two sides of the oil well show a decreasing trend. In the affected area of the abandoned oil well, the distribution of the desorption gas content in coal seam along the center distance of the oil well presents a decreasing trend in power function, particularly the closer the working face is to the center of the oil well. The higher the concentration of CH4 and H2S, the lower the concentration when the working face moves further away from the oil well. The influence radius of CH4 and H2S gas on the coal seam in the affected area of Ma tan 31 abandoned oil well is over 300 m. The results provide a theoretical basis for further understanding the law of gas and hydrogen sulfide enrichment in the mining face and the design of treatment measures within the influence range of abandoned oil wells.
After long-term oxidation and energy storage, broken coal body borehole walls and drainage shaft walls may cause spontaneous combustion during gas extraction. The high-temperature thermal shock caused by the spontaneous combustion of coal incurs thermal damage on adjacent coal, which, in turn, causes changes in the mechanical properties of the coal. However, only a few studies have been conducted in this context, which has limited our understanding of the thermal damage characteristics of coal bodies in such situations. This study aimed to experimentally investigate the correlation between the crack evolution law and the mechanical properties of coal bodies at different temperatures (50–300°C) using heat-force loading considering Ping Mei No. 10 coal mine as the research object. The results suggest that the coal body experiences a large amount of visible damage, and becomes increasingly complex. At 50–300°C, some indexes (such as longitudinal wave velocity, Poisson’s ratio, compressive strength, elastic modulus, impact energy index, and pre-peak strain) are positively correlated with temperature. In addition, the dynamic failure time and temperature show a negative correlation, and the overall change slope is small. The relationship between each index and temperature at 200–300°C is opposite to that at 50–200°C, and the overall change slope is larger. Moreover, when the oxidation temperature exceeds 200°C, the destruction of the coal body changes from elastic brittleness to ductility-plasticity. High-temperature oxidation incurs irreversible thermal damage of coal. Hence, it is necessary to focus on the changes in mechanical properties of coal after a spontaneous combustion process is extinguished.
In this study, the surface crack-propagation law and pore damage characteristics of coal samples of different water contents after they undergo leaching in liquid nitrogen are investigated using a 4 K scientific-research camera, HC-U7 non-metal ultrasonic detector, nuclear magnetic resonance testing technology, and self-made multi-functional three axial fluid–solid coupling test system. Experimental investigations are conducted on coal samples of different water contents before and after they undergo liquid-nitrogen freezing and thawing in order to determine the propagation law of surface fissures, the development law of internal micro-fissures, the development process of internal pores, the change law of the pore-size distribution, and the law of coal-sample deformation and gas seepage during the stress process. The test results show that, with the increase in water content in the liquid-nitrogen leaching process, the frost heave force on the coal surface increases, and the greater the increase ratio of the coal porosity, the faster is the development of micro-cracks and pores. Under the action of liquid nitrogen, the number of micro-pores, meso-pores, and macro-pores in the coal sample increased, and with the formation of new cracks and the connection of the original cracks, liquid-nitrogen freezing and thawing can promote the development of the pore structure in the coal body. The permeability changes of coal samples of different water contents during unloading failure exhibit obvious stage characteristics. The above results demonstrate that the moisture content of coal has a significant effect on the development of surface cracks and pore-damage characteristics of coal after liquid-nitrogen freezing and thawing, and there is a positive correlation between the surface crack expansion and internal damage of the coal samples of different moisture contents leached in liquid nitrogen.
In order to study the effect of freezing and thawing of liquid nitrogen on the mechanical and seepage characteristics of coal rock with different water content values, conventional triaxial loading tests on freeze–thawed coal samples with different water content values were carried out using non-contact digital image processing technology. The research results showed that with the same water content, the peak strength of a liquid nitrogen freeze–thawed coal sample was smaller than that of a non-freeze–thawed coal sample, and the Poisson’s ratio was larger than that of the non-freeze–thawed coal sample; compared with the non-freeze–thawed coal sample, the strain fluctuation and concentration in the stages of compression density, elasticity, yield, and damage were weakened after freeze–thawing by liquid nitrogen, but the local stress concentration was more obvious; the non-freeze–thawed coal sample mainly showed single shear damage, and the damage fissures were inclined fissures with small openings. The higher the water content, the more obvious the tensile damage; with the increase in water content, the permeability of non-freeze–thawed coal samples showed a linear decreasing trend, and the permeability of coal samples was 0.03 × 10–3 μm2 when the water content reached 9%. The permeability of freeze–thawed coal samples showed a non-linear increasing trend, and the higher the water content under the effect of expansion, the faster the permeability growth rate; the permeability of coal samples could reach 6.30 × 10–3 μm2 when the water content was 9%. The results of the study can provide a theoretical guidance for gas permeation enhancement in deep low-permeability coal seams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.