In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0–2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte.
Background: The current study aimed to investigate the impact of asymptomatic or mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on female fertility and laboratory and clinical outcomes in assisted reproductive technology (ART) treatments. Methods: Patients undergoing ART treatments in the Reproductive Medicine Center, Tongji Hospital, Wuhan, from May 2020 to February 2021 were enrolled. Seventy of them were positive for serum SARS-CoV-2 antibodies (IgG and/or IgM), and 3973 patients had negative results. Propensity score matching with a ratio of 1:3 was performed, and there were 65 females in the case group and 195 females in the control group. Findings: The ovarian reserves and ovarian responses between groups after matching were similar. The proportions of mature oocytes, damaged oocytes, fertilized oocytes, cleavage embryos, high-quality embryos, and available blastocysts were also similar, despite a slight decrease in the blastocyst formation rate in the case group. In addition, there were no significant differences in terms of the biochemical pregnancy rate, clinical pregnancy rate, early miscarriage rate, or implantation rate. Interpretation: There is no evidence that a history of asymptomatic or mild SARS-CoV-2 infection in females may negatively affect female fertility, embryo laboratory outcomes, or clinical outcomes in ART treatments.
Diabetic cardiomyopathy, which refers to the destruction of the structure and function of the heart, is the primary cause of heart failure due to diabetes. LCZ696 is the first angiotensin receptor-neprilysin inhibitor (ARNi) to be used clinically. Our study investigated the role played by LCZ696 during diabetic cardiomyopathy and explored the potential mechanisms underlying these effects. Diabetes was induced by injecting streptozotocin intraperitoneally into mice, and the mice were then divided randomly into two groups: one group was treated with LCZ696 (60 mg/kg/d) for 16 weeks, and the other received no treatment. The H9C2 cardiomyoblast cell line was treated with LCZ696 under high-glucose (HG) conditions. The levels of apoptotic (Bax, Bcl-2 and cleaved caspase-3) and pro-inflammatory factors [nuclear factor (NF)-κB, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated kinase (MAPK)] were assessed in heart tissues from diabetic and normal mice and in H9C2 cells. The heart tissue structures and cardiac functions of diabetic mice were compared with those of normal mice, using histological and echocardiographic analyses. The results showed that LCZ696 inhibits the nuclear transfer of NF-κB and JNK/p38MAPK phosphorylation, and mitigates inflammation and apoptosis in diabetic mice and H9C2 cardiomyocytes under HG conditions. The histological and echocardiographic data showed that compared with untreated diabetic mice, diabetic mice treated with LCZ696 exhibited improved ventricular remodeling and cardiac function. LCZ696 also ameliorated oxidative stress in both vivo and vitro. In conclusion, LCZ696 improved diabetic cardiomyopathy by reducing cardiac inflammation, oxidative stress, and apoptosis. Impact statement Diabetic cardiomyopathy (DCM) is an important cause of heart failure in patients with diabetes, resulting in increased morbidity and mortality. LCZ696, which was studied here, is a novel drug for the treatment of heart failure. The latest research reports that LCZ696 is more effective for preventing heart failure than valsartan alone. However, little research has been performed examining the effects of LCZ696 on DCM. This study was designed to examine the role played by LCZ696 during DCM and the potential mechanisms underlying these effects, which may provide the basis for a new therapeutic strategy for DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.