As a crucial element for plants, calcium (Ca) is involved in photosynthesis and nutrient absorption, and affects the growth of plants. Poplar is an important economic forest and shelter forest species in China. However, the optimum calcium concentration for its growth is still unclear. Herein, we investigated the growth, biomass, photosynthetic pigments, photosynthetic parameters and products, chlorophyll fluorescence parameters, water use efficiency (iWUE), and antioxidant enzyme activity of “Liao Hu NO.1” poplar (P. simonii × P. euphratica) seedlings at 0, 2.5, 5, 10, and 20 mmol·L−1 concentrations of Ca2+, and further studied the absorption, distribution, and utilization of nutrient elements (C, N, P, K, and Ca) in plants. We found that with increasing calcium gradient, plant height and diameter; root, stem, leaf, and total biomasses; net photosynthetic rate (Pn); stomatal conductance (Gs); intercellular carbon dioxide (Ci) level; transpiration rate (Tr); Fv/Fm ratio; Fv/F0 ratio; chlorophyll-a; chlorophyll-b; soluble sugar and starch content; superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) levels; and long-term water use efficiency (iWUE) of poplar seedlings first increased and then decreased. These parameters attained maximum values when the calcium concentration was 5 mmol·L−1, which was significantly different from the other treatments (P < 0.05). Moreover, a suitable Ca2+ level promoted the absorption of C, N, P, K, and Ca by various organs of poplar seedlings. The absorption of C, N, P, and K increased first and then decreased with the increased calcium concentration, but the optimum calcium concentrations for the absorption of different elements by different organs were different, and the calcium concentration in leaves, stems, and roots increased gradually. Furthermore, the increase in exogenous calcium content led to a decreasing trend in the C/N ratio in different organs of poplar seedlings. C/P and N/P ratios showed different results in different parts, and only the N/P ratio in leaves showed a significant positive correlation with Ca2+ concentration. In conclusion, the results of this study indicate that 5 mmol·L−1 concentration of Ca2+ is the optimal level, as it increased growth by enhancing photosynthesis, stress resistance, and nutrient absorption.
As the main component of snowmelt agents, NaCl is widely used in northern winters and significantly impacts the expected growth of garden plants in north China. Salix matsudana is also faced with salt stress caused by snowmelt, which seriously affects its development as the main tree species in the northern landscape. However, how exogenous calcium alleviates salt stress in Salix matsudana is not yet clear. In this study, the indicators of growth indices, photosynthetic characteristics and stress resistance were measured by hydroponic assays in combination with three NaCl conditions (0, 50 and 200 mmol·L-1) and five calcium concentrations (0, 2.5, 5, 10 and 20 mmol·L-1). The study’s results indicated that the application of exogenous calcium remarkably promoted the growth of Salix matsudana seedlings under NaCl stress. When the exogenous calcium concentration was 10 mmol·L-1, the plant height and basal diameter of Salix matsudana seedlings increased significantly, and the biomass of all parts reached the maximum (P< 0.05). Exogenous calcium can substantially improve the photosynthesis of Salix matsudana seedlings under salt stress. The photosynthetic parameters, photosynthetic pigment content and photosynthetic product synthesis of Salix matsudana seedlings were significantly increased at an exogenous calcium concentration of 10 mmol·L-1, and the photosynthetic level of Salix matsudana seedlings reached the highest value. The chlorophyll fluorescence parameters (Fv/Fm, Fv/F0) of Salix matsudana seedlings were significantly decreased under different concentrations of NaCl stress. The maximum photochemical efficiency (Fv/Fm) and potential photochemical efficiency (Fv/F0) of Salix matsudana seedlings peaked when the exogenous calcium concentration was 10 mmol·L-1, which was significantly higher than that of the other treatments (P< 0.05). The water use efficiency of Salix matsudana was affected considerably by NaCl stress. The WUE and iWUE peak values of Salix matsudana were significantly higher than those of other calcium concentrations at 10 mmol·L-1 (P< 0.05). Exogenous calcium can increase the activities of CAT, SOD and POD enzymes in Salix matsudana seedlings under different NaCl concentrations. Under NaCl stress, adding exogenous calcium promoted the survival rate and growth of Salix matsudana seedlings. In conclusion, the optimum exogenous calcium concentration for Salix matsudana seedlings was 10 mmol·L-1. High or low concentrations of exogenous calcium did not achieve the best results in alleviating salt stress in Salix matsudana.
Mongolian pine, as one of the major tree species of the Three-North Shelterbelt Project in the northern semiarid region of China, is very important for ensuring ecological and environmental security. Ca, as an imperative mineral element for plant development and a second messenger, partakes in photosynthesis and affects the growth of plants. However, the optimal calcium concentration for its growth in different soil types is still unclear. In this study, fifteen treatments with combinations of three different soils (e.g., sandy soil, cinnamon soil, dark brown soil) and five calcium concentration gradients (e.g., 0, 100, 200, 400, and 800 mg∙kg-1) were conducted to investigate this effect by measuring the indices of growth, biomass, photosynthetic pigment, gas exchange rate, photosynthates, chlorophyll fluorescence parameters and water use efficiency (iWUE) based on a pot experiment. The results showed that the optimal calcium concentration of Mongolian pine seedlings in sandy soil and cinnamon soil was 0–100 mg∙kg-1, and the optimal calcium concentration of Mongolian pine seedlings in dark brown soil was 100–200 mg∙kg-1. In other words, the results showed that there was an optimal calcium concentration for the growth of Mongolian pine seedlings, and the optimal calcium concentration was different under different soil types. And if the calcium concentration in the soil was too high, it would have an inhibitory effect on Mongolian pine seedlings, low calcium concentration maybe don’t work. The addition of an appropriate amount of exogenous calcium could promote the growth of Mongolian pine seedlings in different soil types. The plant height, basal diameter and biomass of Mongolian pine seedlings all increased significantly after applying an appropriate amount of calcium (p < 0.05); the addition of an appropriate amount of exogenous calcium could promote the photosynthetic characteristics of Mongolian pine seedlings in different soil types. Under sandy soil and cinnamon soil, the peaks for Pn, Gs, Tr, accumulation of soluble sugar and starch of Mongolian pine seedlings occurred at 0–100 mg∙kg-1, and the decreasing trend of the Fv/Fm value was significant in the case of exceeding 200 mg∙kg-1 (p < 0.05), indicating that the growth of Mongolian pine seedlings was affected when calcium concentrations higher than 200 mg∙kg-1 were applied. Moreover, under dark brown soil, the peaks for Pn, Gs, Tr, and accumulation of soluble sugar and starch of Mongolian pine seedlings occurred at 100–200 mg∙kg-1; similarly, the growth of Mongolian pine seedlings was affected when calcium concentrations higher than 200 mg∙kg-1 were applied. Compared with the treatment without calcium, after applying an appropriate amount of exogenous calcium, the water use efficiency of Mongolian pine seedlings in different soil types was significantly improved, though it was significantly reduced at 800 mg∙kg-1 (p < 0.05).
Ca2+ is a crucial second messenger in plant cells that plays a vital role in various physiological and biochemical processes, including plant growth and development, photosynthesis, and enzyme regulation. Exogenous calcium concentrations can have different effects on plant growth. The purpose of this study was to determine the appropriate calcium concentration for the growth of four tree seedlings, namely Pinus tabuliformis, Pinus sylvestris var. mongolica, Populus, and Morus alba seedlings, and whether this optimal calcium concentration varies among different tree species. This study utilized five calcium concentration gradients (0, 100, 200, 400, 800 mg·kg−1) for each species with three repeated treatments. To determine each species’ calcium concentration needs, several growth indices, photosynthetic metrics, chlorophyll fluorescence parameters, water usage efficiency, and antioxidant enzyme activities were analyzed. The results showed that exogenous calcium significantly affected the growth and development of each seedling. The growth, biomass, photosynthetic parameters, photosynthetic products, photosynthetic pigments, water use efficiency, and antioxidant enzyme activity all increased initially and then decreased with the increasing calcium concentration. The exogenous calcium supply increased the concentration of calcium in the leaves. Thus, there was an optimal calcium concentration for plant growth, and a high or low calcium concentration was not conducive to plant growth. Furthermore, this study found that the optimum calcium concentration of different tree species was different. The optimal calcium concentration for Pinus tabuliformis, Pinus sylvestris var. mongolica, Populus, and Morus alba seedlings was 100, 100, 200, and 400 mg·kg−1, respectively, with broadleaf seedlings requiring higher calcium concentrations than coniferous seedlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.