Background: Serum parameters as prognostic parameters are studied widely. We aim to examine the prognostic significance of the serum alkaline phosphatase (ALP) level and lactate dehydrogenase (LDH) level in triple negative breast cancer (TNBC).Methods: Total of 253 TNBC patients from Sun Yat-sen University Cancer Center who underwent treatment between January 2004 and December 2009 was conducted in this retrospective study. Before treatment serum ALP and LDH levels were routinely measured. We use the receiver operating characteristic (ROC) curve analysis to estimate the cutoff value of serum ALP and LDH levels. The Kaplan-Meier method and multivariable Cox regression analysis were used for Disease free survival (DFS) and overall survival (OS) assessed.Results: The ROC curves determined that the optimum cutoff point for ALP and LDH were 66.5u/L and 160.5u/L, respectively. The elevated ALP and LDH were both significantly associated with decreased DFS and OS (both P < 0.001). In addition, the entire cohort was stratified into three subgroups basis of ALP levels and LDH levels. TNBC Patients who with ALP >66.5 u/L and LDH >160.5u/L had the worst DFS and OS (both P < 0.001). In TNBC patients, univariate and multivariate Cox regression analyses conformed ALP and LDH were independent unfavorable prognostic factors for DFS and OS.Conclusions: The serum levels of ALP and LDH before treatment are independent prognostic parameters and may serve as complement to help predict survival in TNBC.
miR-124-3p has been implicated in a variety of cancers. The purpose of the present study was to investigate the expression, prognostic roles and functions of miR-124-3p in gastric cancer. Functional studies indicated that ectopic overexpression of miR-124-3p in gastric cancer cells suppressed cell viability and plate colony formation in vitro and tumor growth in vivo. In situ hybridization analysis demonstrated that decreased expression of miR-124-3p was associated with clinical stage and lymph node metastasis, as well as shorter overall survival and disease-free survival rates. Furthermore, it was observed that miR-124-3p repressed the carcinogenesis of gastric cancer by targeting Ras-related C3 botulinum toxin substrate 1 (Rac1) and specificity protein 1 (SP1). Collectively, these results indicate a potential underlying mechanism for the regulation of gastric cancer by miR-124-3p involving targeting of Rac1 and SP1. Thus, miR-124-3p may be an independent indicator of survival and treatment strategy for patients with gastric cancer.
Abstract. The aim of the present study was to verify whether overexpression of CXC receptor 4 (CXCR4) promotes the invasion and migration of non-small cell lung cancer (NSCLC) via epidermal growth factor receptor (EGFR) and matrix metallopeptidase-9 (MMP-9), and to detect the association between CXCR4, EGFR and MMP-9. The effects of overexpression of CXCR4 on lung cancer cell functions were investigated by migration and invasion assays. Western blotting and zymograph assays were used to analyze the protein expression levels of EGFR and the production of MMP-9, respectively. Immunohistochemistry was applied to analyze the expression of EGFR, CXCR4 and MMP-9 in NSCLC. Statistical analyses were used to detect the associations among EGFR, CXCR4 and MMP-9 in NSCLC. Finally, survival analyses were performed. CXCR4 overexpression enhanced cell motility and invasion. CXCR4 also promoted expression of EGFR and elevated MMP-9 production. CXCR4, EGFR and MMP-9 were highly expressed in NSCLC, and were not identified as associated with age and sex (P>0.05). However, they were associated with tumor differentiation and lymph node metastasis (P<0.05). CXCR4, EGFR and CXCR4 expression were positively associated with one another in NSCLC (P<0.05). In addition, patients with positive expression of CXCR4, EGFR or MMP-9 in tumors exhibited significantly shorter overall survival compared with those with negative expression (P<0.05). In conclusion, CXCR4 overexpression enhanced cell motility and invasion via EGFR and MMP-9. CXCR4, EGFR and MMP-9 were identified as highly expressed in NSCLC, and there was positive correlation among them.
Diallyl disulfide (DADS) is a primary component of garlic, which has chemopreventive potential. We previously found that moderate doses (15-120 µM) of DADS induced apoptosis and G2/M phase cell cycle arrest. In this study, we observed the effect of low doses (8 µM) of DADS on human leukemia HL-60 cells. We found that DADS could inhibit proliferation, migration and invasion in HL-60 cells, and arrested cells at G0/G1 stage. Then, cell differentiation was displayed by morphologic observation, NBT reduction activity and CD11b evaluation of cytometric flow. It showed that DADS induced differentiation, reduced the ability of NBT and increased CD11b expression. Likewise, DADS inhibited xenograft tumor growth and induced differentiation in vivo. In order to make sure how DADS induced differentiation, we compared the protein expression profile of DADS-treated cells with that of untreated control. Using high resolution mass spectrometry, we identified 18 differentially expressed proteins after treatment with DADS, including four upregulated and 14 downregulated proteins. RT-PCR and western blot assay showed that DJ-1, cofilin 1, RhoGDP dissociation inhibitor 2 (RhoGDI2), Calreticulin (CTR) and PCNA were decreased by DADS. These data suggest that the effects of DADS on leukemia may be due to multiple targets for intervention.
Background: Recently research reported that miR-185-3p could serve as an independent prognosis factor in gastric cancer (GC). However, the functional role and underlying mechanism of miR-185-3p in GC and epithelial-mesenchymal transition (EMT) progression remains largely elusive. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to analyze the expression of miR-185-3p and cathepsin D in patient-derived GC samples and various GC cell lines. Scratch assay and Transwell assay were used to evaluate the migration ability. The influence of miR-185-3p on the cell cycle distribution and cell apoptosis was evaluated using flow cytometry. Western blotting assay was performed to detect the expression of EMT associated proteins and the activity of PI3K/Akt signaling pathway. Furthermore, the interaction between miR-185-3p and cathepsin D was explored by dual-luciferase reporter assay.Results: Our data revealed that miR-185-3p was down-regulated, while cathepsin D was up-regulated in both patient-derived GC samples and GC cells. Apart from inducing apoptosis, overexpression of miR-185-3p also inhibited EMT process and migration of GC cells. Mechanically, we firstly verified that miR-185-3p directly targeted the cathepsin D. Furthermore, miR-185-3p exerted its function on EMT process and migration via inhibiting cathepsin D to mediated PI3K/Akt signaling pathway.Conclusions: Our findings suggested that miR-185-3p targeted cathepsin D inhibiting EMT process via PI3K/Akt signaling, which may serve as a potential prognosis factor and therapeutic target to reduce the malignancy of GCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.