It is essential to understand where and how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted. Case reports were extracted from the local Municipal Health Commissions of 320 prefectural municipalities in China (not including Hubei Province). We identified all outbreaks involving three or more cases and reviewed the major characteristics of the enclosed spaces in which the outbreaks were reported and their associated indoor environmental aspects. Three hundred and eighteen outbreaks with three or more cases were identified, comprising a total of 1245 confirmed cases in 120 prefectural cities. Among the identified outbreaks, 53.8% involved three cases, 26.4% involved four cases, and only 1.6% involved ten or more cases. Home-based outbreaks were the dominant category (254 of 318 outbreaks; 79.9%), followed by transport-based outbreaks (108; 34.0%), and many outbreaks occurred in more than one category of venue. All identified outbreaks of three or more cases occurred in indoor environments, which confirm that sharing indoor spaces with one or more infected persons is a major SARS-CoV-2 infection risk.
249 words) Main text (2447 words) AbstractBackground: By early April 2020, the COVID-19 pandemic had infected nearly one million people and had spread to nearly all countries worldwide. It is essential to understand where and how SARS-CoV-2 is transmitted.Methods: Case reports were extracted from the local Municipal Health Commissions of 320 prefectural cities (municipalities) in China, not including Hubei province, between 4 January and 11 February 2020. We identified all outbreaks involving three or more cases and reviewed the major characteristics of the enclosed spaces in which the outbreaks were reported and associated indoor environmental issues.Results: Three hundred and eighteen outbreaks with three or more cases were identified, involving 1245 confirmed cases in 120 prefectural cities. We divided the venues in which the outbreaks occurred into six categories: homes, transport, food, entertainment, shopping, and miscellaneous. Among the identified outbreaks, 53·8% involved three cases, 26·4% involved four cases, and only 1·6% involved ten or more cases. Home outbreaks were the dominant category (254 of 318 outbreaks; 79·9%), followed by transport (108; 34·0%; note that many outbreaks involved more than one venue category). Most home outbreaks involved three to five cases. We identified only a single outbreak in an outdoor environment, which involved two cases.Conclusions: All identified outbreaks of three or more cases occurred in an indoor environment, which confirms that sharing indoor space is a major SARS-CoV-2 infection risk.
The emergence of respiratory diseases, i.e., severe acute respiratory syndrome (SARS) epidemic in 2003, H1N1 influenza epidemic in 2011 and Middle East respiratory syndrome (MERS) outbreak, reiterated the significance of ventilation in buildings. The role of ventilation in removing exhaled airborne bio-aerosols and preventing cross infections has been multidisciplinary extensively studied after the SARS outbreak in 2003. The characteristics of droplet-borne, short-range airborne and long-range airborne transmission of infectious diseases were identified. Increasing ventilation rate can effectively reduce the risk of long-range airborne transmission, while it may be of little useful in preventing the droplet-borne transmission. To maintain the airflow direction from clean cubicles to dirty cubicles is an effective way to prevent the cross infection between cubicles, which is widely used in hospital isolation rooms. Field measurements showed that wrong air flow direction was due to poor construction quality or maintenance. The impacts of different airflow patterns on removing large droplets and fine droplet nuclei were discussed. Some new concepts in general ventilation systems and local personalized equipment were also introduced. This review updates current knowledge of the airborne transmission of pathogens and the improvement of ventilation efficiency concerning the infection prevention.
The fluorescence of nanoparticles has attracted much attention in recent research, but in many cases the underlying mechanisms are difficult to evaluate due to the polydispersity of nanoparticles and their unknown structures, in particular the surface structures. Recent breakthroughs in the syntheses and structure determinations of well-defined gold nanoclusters provide opportunities to conduct in-depth investigations. Devising well-defined nanocluster sensors based on fluorescence change is of particular interest not only for scientific studies but also for practical applications. Herein, the potential of the glutathionate (SG)-capped Au(25) nanocluster as a silver ion sensor is evaluated. The Ag(+) detection limit of approximately 200 nM, based on the fluorescence enhancement and good linear fluorescence response in the silver ion concentration range from 20 nM to 11 μM, in combination with the good selectivity among 20 types of metal cations, makes Au(25) (SG)(18) a good candidate for fluorescent sensors for silver ions. Further experiments reveal three important factors responsible for the unique fluorescence enhancement caused by silver ions: 1) the oxidation state change of Au(25) (SG)(18) ; 2) the interaction of neutral silver species (Ag(0) , reduced by Au(25) (SG)(18) (-) ) with Au(25) (SG)(18) ; and 3) the interaction of Ag(+) with Au(25) (SG)(18.) Experiments demonstrate the very different chemistry of hydrophobic Au(25) (SC(2) H(4) Ph)(18) and hydrophilic Au(25) (SG)(18) in the reaction with silver ions. This work indicates another potential application of gold nanoclusters, offers new strategies for nanocluster-based chemical sensing, and reveals a new way to influence nanocluster chemistry for potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.