Adaptive transgenerational plasticity is an important evolutionary strategy in plants. We investigated the resource allocation strategy in sexual reproduction and performed an in situ seed germination experiment of Potamogeton maackianus to reveal their responses to different water depths. Later, we discussed the biased adaptability to the maternal habitat in this species. We found a positive correlation between sexual and asexual reproduction in water depths from 1.0 m to 3.0 m, such a correlation failed to occur in 4.0 m water depth. These results indicate that the trade-off between sexual and asexual reproduction should only be expected in a stressful habitat, where resource acquisition is limited. For trade-off between quantity and quality of sexual units in different water depths, P. maackianus tends to produce more but lower quality sexual reproductive units in shallow water, and fewer but higher quality sexual units are found in deep water. The total germination percentage of seeds of P. maackianus was relatively poor, less than 46.65% in all of the treatments. The maximum germination percentage of seeds from 1.0 m, 2.0 m, 3.0 m, and 4.0 m water depths are 14.4%, 17.75%, 25.51%, and 46.65%, respectively. Seeds with higher germination percentage were from deeper water depths. The most interesting result was that the maximum final germination percentage occurred only when treatment water depth was the same as collection water depth. Our result showed that the variations in germination characters of the studied species appear to be based partly on the effects of maternal environmental factors. Our findings proved the adaptive transgenerational plasticity in P. maackianus, which will play an important role in evolutionary response to the selection of water depths.
Trapanatans is one of the main species causing the swamping in the littoral zones of Erhai Lake. It commonly forms a dense canopy on the water surface in the growing season (June–September), which hampers the local water quality and habitat of submerged macrophytes, and releases nutrients to the water after death in autumn and winter, resulting in the deterioration of local water quality. At present, there are many and positive research studies on the short-term effects of harvesting water chestnut on water quality and aquatic plants, but long-term observation results are lacking. In response to the above problems, we studied responses of water quality and aquatic plant community to the removal of Trapa in littoral zone of a northern bay in Erhai from August 2014 to January 2017. This could be the first attempt to discover the long-term effects of floating-leaved vegetation management in the freshwater ecosystem. The results showed that the artificial removal of Trapa significantly improved the local water quality in the growing season, for example, the concentrations of total nitrogen (TN), dissolved nitrogen (DN), total phosphorus (TP), and dissolved phosphorus (DP) in the non-Trapa zone (NTZ) were much lower than the concentrations of those in the adjacent Trapa zone (TZ). And the biomass of aquatic macrophyte community (BAMC) was significantly increased in the NTZ, up to the maximum value of about 21 kg/m2 in fresh weight. However, the diversity indexes of the community in the NTZ declined. Therefore, we suggested that although the removal of Trapa improved the water quality and increased the productivity of the submerged aquatic plant community, it reduced the species diversity of the aquatic plant community in the long run. This is another issue that we need to pay attention to in the later management in Erhai Lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.