Centromeric chromatin – spindle microtubule interactions mediated by kinetochores drive chromosome segregation. We have developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at < 5 nm accuracy — to elucidate the protein architecture of human metaphase kinetochores. Delta analysis, when correlated with tension states of spindle-attached sister kinetochore pairs, provided information on mechanical properties of protein linkages within kinetochores. Treatment with taxol—which suppresses microtubule dynamics, eliminates tension at kinetochores, and activates the spindle checkpoint—resulted in specific large-scale changes in kinetochore architecture. Cumulatively, Delta analysis revealed compliant linkages close to the centromeric chromatin, suggests a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and reveals architectural changes induced by taxol treatment. The methods described here should also be applicable to other intermediate-scale biological machines in cells.
Merotelic kinetochore orientation is a misattachment in which a single kinetochore binds microtubules from both spindle poles rather than just one and can produce anaphase lagging chromosomes, a major source of aneuploidy. Merotelic kinetochore orientation occurs frequently in early mitosis, does not block chromosome alignment at the metaphase plate, and is not detected by the spindle checkpoint. However, microtubules to the incorrect pole are usually significantly reduced or eliminated before anaphase. We discovered that the frequency of lagging chromosomes in anaphase is very sensitive to partial inhibition of Aurora kinase activity by ZM447439 at a dose, 3 microM, that has little effect on histone phosphorylation, metaphase chromosome alignment, and cytokinesis in PtK1 cells. Partial Aurora kinase inhibition increased the frequency of merotelic kinetochores in late metaphase, and the fraction of microtubules to the incorrect pole. Measurements of fluorescence dissipation after photoactivation showed that kinetochore-microtubule turnover in prometaphase is substantially suppressed by partial Aurora kinase inhibition. Our results support a preanaphase correction mechanism for merotelic attachments in which correct plus-end attachments are pulled away from high concentrations of Aurora B at the inner centromere, and incorrect merotelic attachments are destabilized by being pulled toward the inner centromere.
The spindle checkpoint generates a ''wait anaphase'' signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubuleattached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein. Microtubule attachments of the correct geometry are stabilized by tension experienced at sister kinetochores that have made bioriented connections to opposite poles (Nicklas 1997). Once all kinetochores are attached in a bioriented fashion to microtubule bundles, termed kinetochore fibers, the checkpoint signal is silenced and the cell proceeds to anaphase.The spindle checkpoint regulates the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which targets cyclin B and securin for destruction by the 26S proteasome. Specifically, the checkpoint components Mad2, BubR1, and Bub3 interact with and inhibit the essential APC/C cofactor Cdc20 by forming diffusible mitotic checkpoint complexes (Hwang et al. 1998;Sudakin et al. 2001;Nilsson et al. 2008). Additional components of the checkpoint pathway, including Mad1 and the kinases Bub1 and Mps1, are involved in the generation and amplification of the checkpoint signal (Hoyt et al. 1991;Li and Murray 1991;Abrieu et al. 2001).The conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network constitutes the core attachment site for microtubules at the kinetochore and also recruits components that generate the checkpoint signal (Burke and Stukenberg 2008). Additional contacts to microtubules are made by the kinesin CENP-E (Weaver et al. 2003) and by the minus end-directed motor dynein and its Cold Spring Harbor Laboratory Press on May 11, 2018 -Published by genesdev.cshlp.org Downloaded from
Cdt1, a protein critical for replication origin licensing in G1 phase is degraded during S phase but re-accumulates in G2 phase. We now demonstrate that human Cdt1 has a separable essential mitotic function. Cdt1 localizes to kinetochores during mitosis through interaction with the Hec1 component of the Ndc80 complex. G2-specific depletion of Cdt1 arrests cells in late prometaphase due to abnormally unstable kinetochore-microtubule (kMT) attachments and Mad1-dependent spindle assembly checkpoint activity. Cdt1 binds a unique loop extending from the rod domain of Hec1 that we show is also required for kMT attachment. Mutation of the loop domain prevents Cdt1 kinetochore localization and arrests cells in prometaphase. Super-resolution fluorescence microscopy indicates that Cdt1 binding to the Hec1 loop domain promotes a microtubule-dependent conformational change in the Ndc80 complex in vivo. These results support the conclusion that Cdt1 binding to Hec1 is essential for an extended Ndc80 configuration and stable kinetochore microtubule attachment.
Summary Constitutive Centromere Associated Network (CCAN) proteins, particularly CENP-C, CENP-T and the CENP-H/-I complex, mechanically link CENP-A-containing centromeric chromatin within the inner kinetochore to outer kinetochore proteins, like the Ndc80 complex, that bind kinetochore microtubules. Accuracy of chromosome segregation depends critically upon Aurora B phosphorylation of Ndc80/Hec1. To determine how CCAN protein architecture mechanically constrains intrakinetochore stretch between CENP-A and Ndc80/Hec1 for proper Ndc80/Hec1 phosphorylation, we used super-resolution fluorescence microscopy and selective protein depletion. We found that at bi-oriented chromosomes in late prometaphase cells, CENP-T is stretched ~16 nm to the inner end of Ndc80/Hec1, much less than expected for full-length CENP-T. Depletion of various CCAN linker proteins induced hyper-intrakinetochore stretch (an additional 20-60 nm) with corresponding significant decreases in Aurora B phosphorylation of Ndc80/Hec1. Thus, proper intrakinetochore stretch is required for normal kinetochore function and depends critically on all the CCAN mechanical linkers to the Ndc80 complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.