T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.
In immune responses, activated T cells migrate to B cell follicles and develop to T follicular helper (Tfh) cells, a new subset of CD4+ T cells specialized in providing help to B lymphocytes in the induction of germinal centers 1,2. Although Bcl6 has been shown to be essential in Tfh cell function, it may not regulate the initial migration of T cells 3 or the induction of Tfh program as exampled by C-X-C chemokine receptor type 5 (CXCR5) upregulation 4. Here, we show that Achaete-Scute homologue 2 (Ascl2), a basic helix-loop-helix (bHLH) transcription factor 5, is selectively upregulated in its expression in Tfh cells. Ectopic expression of Ascl2 upregulates CXCR5 but not Bcl6 and downregulates C-C chemokine receptor 7 (CCR7) expression in T cells in vitro and accelerates T cell migration to the follicles and Tfh cell development in vivo. Genome-wide analysis indicates that Ascl2 directly regulates Tfh-related genes while inhibits expression of Th1 and Th17 genes. Acute deletion of Ascl2 as well as blockade of its function with the Id3 protein in CD4+ T cells results in impaired Tfh cell development and the germinal center response. Conversely, mutation of Id3, known to cause antibody-mediated autoimmunity, greatly enhances Tfh cell generation. Thus, Ascl2 directly initiates Tfh cell development.
Metabolism has been shown to integrate with epigenetics and transcription to modulate cell fate and function. Beyond meeting the bioenergetic and biosynthetic demands of T-cell differentiation, whether metabolism might control T-cell fate by an epigenetic mechanism is unclear. Here, through the discovery and mechanistic characterization of a small molecule, (aminooxy)acetic acid, that reprograms the differentiation of T helper 17 (T17) cells towards induced regulatory T (iT) cells, we show that increased transamination, mainly catalysed by GOT1, leads to increased levels of 2-hydroxyglutarate in differentiating T17 cells. The accumulation of 2-hydroxyglutarate resulted in hypermethylation of the Foxp3 gene locus and inhibited Foxp3 transcription, which is essential for fate determination towards T17 cells. Inhibition of the conversion of glutamate to α-ketoglutaric acid prevented the production of 2-hydroxyglutarate, reduced methylation of the Foxp3 gene locus, and increased Foxp3 expression. This consequently blocked the differentiation of T17 cells by antagonizing the function of transcription factor RORγt and promoted polarization into iT cells. Selective inhibition of GOT1 with (aminooxy)acetic acid ameliorated experimental autoimmune encephalomyelitis in a therapeutic mouse model by regulating the balance between T17 and iT cells. Targeting a glutamate-dependent metabolic pathway thus represents a new strategy for developing therapeutic agents against T17-mediated autoimmune diseases.
A novel Bcl6 reporter mouse is used to dissect the developmental requirements, plasticity, and genetic profile of Tfh cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.