The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract-Non-orthogonal multiple access (NOMA) enables power-domain multiplexing via successive interference cancellation (SIC) and has been viewed as a promising technology for 5G communication. The full benefit of NOMA depends on resource allocation, including power allocation and channel assignment, for all users, which, however, leads to mixed integer programs. In the literature, the optimal power allocation has only been found in some special cases, while the joint optimization of power allocation and channel assignment generally requires exhaustive search. In this paper, we investigate resource allocation in downlink NOMA systems. As the main contribution, we analytically characterize the optimal power allocation with given channel assignment over multiple channels under different performance criteria. Specifically, we consider the maximin fairness, weighted sum rate maximization, sum rate maximization with quality of service (QoS) constraints, energy efficiency maximization with weights or QoS constraints in NOMA systems. We also take explicitly into account the order constraints on the powers of the users on each channel, which are often ignored in the existing works, and show that they have a significant impact on SIC in NOMA systems. Then, we provide the optimal power allocation for the considered criteria in closed or semi-closed form. We also propose a low-complexity efficient method to jointly optimize channel assignment and power allocation in NOMA systems by incorporating the matching algorithm with the optimal power allocation. Simulation results show that the joint resource optimization using our optimal power allocation yields better performance than the existing schemes.
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs), are regarded as one of the most promising and revolutionizing techniques for enhancing the spectrum and/or energy efficiency of wireless systems. These devices are capable of reconfiguring the wireless propagation environment by carefully tuning the phase shifts of a large number of low-cost passive reflecting elements. In this article, we aim for answering four fundmental questions: 1) Why do we need RISs? 2) What is an RIS? 3) What are RIS's applications? 4) What are the relevant challenges and future research directions? In response, eight promising research directions are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.