It has been well appreciated that aldosterone (Aldo) plays a direct profibrotic role in the kidney but the underlying mechanism is unclear. We examined the role of Aldo in epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Exposure of human renal proximal tubular cells to Aldo for 48 h dose dependently induced EMT as evidenced by conversion to the spindle-like morphology, loss of E-cadherin, and de novo expression of ␣-smooth muscle actin (SMA); the effect was noticeable at 50 nM and maximal at 100 nM. The EMT was completely blocked by the selective mineralocorticoid receptor (MR) antagonist eplerenone. Aldo time dependently increased intracellular reactive oxygen species (ROS) production that was detectable at 15 min and peaked (2.3-fold) at 60 min, as assessed by 2Ј,7Ј-dichlorofluorescin diacetate fluorescence. Aldo-induced oxidative stress and EMT were both abolished by the mitochondrial respiratory chain complex I inhibitor rotenone, but not the NADPH oxidase inhibitor apocynin. Aldo induced phosphorylation of ERK1/2 that was completely blocked by rotenone. Male 129-C57/BL6 mice were treated with deoxycorticosterone acetate (DOCA) salt (subcutaneous implantation of 50 mg of DOCA pellet plus 1% NaCl as drinking fluid) for 3 wk and animals were treated with vehicle or rotenone (600 ppm in diet) for the last week. DOCA salt induced a 2.5-fold increase in ␣-SMA and a 30% reduction of E-cadherin, as assessed by real-time RT-PCR, that were both restricted to renal epithelial cells, as determined by immunohistochemistry. In contrast, DOCA salt-induced changes in ␣-SMA and E-cadherin were completely blocked by treatment with rotenone. These observations suggest that Aldo induces EMT via MR-mediated, mitochondrial-originated, ROS-dependent ERK1/2 activation in renal tubular epithelial cells. reactive oxygen species; renal tubular epithelial cells THE MINERALOCORTICOIDS aldosterone (Aldo) and deoxycorticosterone acetate (DOCA), first identified as a circulating hormone for the regulation of salt homeostasis through mineralocorticoid receptor (MR)-dependent mechanisms, appear now as a major mediator of fibrosis in a number of organs such as the heart (20, 30) and kidney (2). In 1996, Greene et al. (7) provided the first evidence for the involvement of Aldo in the pathogenesis of renal injury in remnant kidney hypertensive rats. A growing body of evidence substantiates the pathologic role of Aldo in renal fibrosis. In this regard, plasma Aldo concentration was markedly elevated, and exogenous infusion of Aldo reversed the renoprotective effects of angiotensinconverting enzyme (ACE) inhibitors in remnant kidney hypertensive rats (7) and stroke-prone, spontaneously hypertensive rats (SHRsp) (23). Furthermore, renal expression of MR in SHRsp rats was significantly elevated compared with normotensive Wistar-Kyoto rats (8). In line with this finding, blockade of MR was renoprotective without altering blood pressure in the N -nitro-L-arginine methyl ester (L-NAME) rat model (24). These studies indicate that Al...
Advanced glycation end products (AGEs) accumulated in different pathological conditions have the potent capacity to alter cellular properties that include endothelial structural and functional regulations. The disruption of endothelial barrier integrity may contribute to AGE-induced microangiopathy and macrovasculopathy. Previous studies have shown that AGEs induced the rearrangement of actin and subsequent hyperpermeability in endothelial cells (ECs). However, the mechanisms involved in this AGE-evoked EC malfunction are not well understood. This study directly evaluated the involvement of moesin phosphorylation in AGE-induced alterations and the effects of the RhoA and p38 MAPK pathways on this process. Using immortalized human dermal microvascular ECs (HMVECs), we first confirmed that the ezrin/radixin/moesin (ERM) protein moesin is required in AGE-induced F-actin rearrangement and hyperpermeability responses in ECs by knockdown of moesin protein expression with small interfering RNA. We then detected AGE-induced moesin phosphorylation by Western blot analysis. The mechanisms involved in moesin phosphorylation were analyzed by blocking AGE receptor binding and inhibiting Rho and MAPK pathways. AGE-treated HMVECs exhibited time- and dose-dependent increases in the Thr(558) phosphorylation of moesin. The increased moesin phosphorylation was attenuated by preadministrations of AGE receptor antibody, Rho kinase (ROCK), or p38 inhibitor. Suppression of p38 activation via the expression of dominant negative mutants with Ad.MKK6b or Ad.p38alpha also decreased moesin phosphorylation. The activation of the p38 pathway by transfection of HMVECs with an adenoviral construct of dominant active MKK6b resulted in moesin phosphorylation. These results suggest a critical role of moesin phosphorylation in AGE-induced EC functional and morphological regulations. Activation of the ROCK and p38 pathways is required in moesin phosphorylation.
New Findings r What is the central question of this study?Why do different doses of sphingosine-1-phosphate (S1P) induce distinct biological effects in endothelial cells? r What is the main finding and its importance? S1P at physiological concentrations preserved endothelial barrier function by binding to S1P receptor 1, then triggering Ca 2+ release from endoplasmic reticulum through phosphoinositide phospholipase C and inositol triphosphate, and consequently strengthening tight junction and F-actin assembly through Rac1 activation. Excessive S1P induced endothelial malfunction by activating S1P receptor 2 and RhoA/ROCK pathway, causing F-actin and tight junction disorganisation. Extracellular Ca 2+ influx was involved in this process.Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid in plasma, and its plasma concentration can be adjusted through a complex metabolic process. The alterations in S1P levels and the activation of receptors collaboratively regulate distinct biological effects. This study was performed to investigate comparatively the effect of different concentrations of S1P on endothelial barrier function and to explore the roles of S1P receptors (S1PRs), Rho GTPases and calcium in S1P-induced endothelial responses. Endothelial barrier function was studied using transendothelial electric resistance and a resistance meter in human umbilical vein endothelial cells. Specific agonists or antagonists were applied to control the activation of S1P receptors and the release of calcium from different cellular compartments. The results indicated that at physiological concentrations, S1P preserved endothelial barrier function by binding with S1PR1. The activation of S1PR1 triggered the release of intracellular Ca 2+ from the endoplasmic reticulum through the PI-phospholipase C and inositol trisphosphate pathways. Consequently, the Rho GTPase Rac1 was activated, strengthening the assembly of tight junction proteins and F-actin. However, excessive S1P induced endothelial barrier dysfunction by activating S1PR2 followed by the RhoA/RhoA kinase pathway, causing the disorganization of F-actin and the disassembly of the tight junction protein ZO-1. An influx of extracellular Ca 2+ was involved in this process. These data suggest that physiological and excessive amounts of S1P induce different responses in human umbilical vein endothelial cells; the activation of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.