To improve the function of machine translation to adapt to global language translation, the work takes deep neural network (DNN) as the basic theory, carries out transfer learning and neural network translation modeling, and optimizes the word alignment function in machine translation performance. First, the work implements a deep learning translation network model for English translation. On this basis, the neural machine translation model is designed under transfer learning. The random shielding method is introduced to implement the language training model, and the machine translation is slightly adjusted as the goal of transfer learning, thereby improving the semantic understanding ability in translation performance. Meanwhile, the work design introduces the method of word alignment optimization and optimizes the performance of word alignment in the transformer system by using word corpus. The experimental results show that the proposed method reduces the average alignment error rate by 8.1%, 24.4%, and 22.1% in EnRo (English-Roman), EnGe (English-German), and EnFr (English-French), respectively, compared with the previous algorithms. Compared with the designed optimization method, the word alignment error rate is lower than that of traditional methods. The modeling and optimization method is feasible, which can effectively solve the problems of insufficient information utilization, large parameter scale, and difficult storage in the process of machine translation. Additionally, it provides a feasible idea and direction for the optimization and improvement in neural machine translation (NMT) system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.