Androgen receptor (AR)-mediated oncogenic pathways have not been fully elucidated. In this study, we used highthroughput microarray analysis on two AR-positive prostate cancer (CaP) cell lines to identify 16 AR-responsive microRNAs (miRNA). We focused on miR-21 because of its previously reported oncogenic activity in other cancers. We show androgen-induced AR binding to the defined miR-21 promoter, miPPR-21, suggesting direct transcriptional regulation. Inhibition of miR-21 diminished androgen-induced CaP cell proliferation, providing new evidence that miRNAs can contribute to androgen-driven cell growth. Elevated expression of miR-21 enhanced CaP tumor growth in vivo and, surprisingly, was sufficient for androgen-dependent tumors to overcome castration-mediated growth arrest. Thus, elevated miR-21 expression alone is sufficient to impart castration resistance. Moreover, quantitative reverse transcription-PCR analysis revealed elevated miR-21 expression in CaP when compared with adjacent normal tissue. These results suggest that miR-21 may contribute to CaP pathogenesis. [Cancer Res 2009;69(18):7165-9]
Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development.
Elevated levels of both reactive oxygen species (ROS) and DNA methylation are characteristic of various types of cancer cells. However, the relation between these two is not well understood. Here we will discuss the cause-consequence relationship between ROS and DNA methylation. Cancer research reveals that disregulation of DNA methylation results in regional CpG island hypermethylation and generalized genomic hypomethylation. ROS-induced oxidative stress is associated with both aberrant hypermethylation of tumor suppressor gene (TSG) promoter regions and global hypomethylation. The DNA oxidation structure, 8-hydroxy-2'-deoxyguanosine (8-OHdG), can induce DNA hypomethylation by inhibiting DNA methylation at nearby cytosine bases, while another DNA oxidation structure, 5-hydroxymethylcytosine (5hmC), may achieve active DNA demethylation processes, thus, causing DNA hypomethylation. Recently, it has been found that ROS can function as catalysts of DNA methylation, further accounting for TSG promoter hypermethylation. Moreover, ROS may induce site-specific hypermethylation via either the up-regulation of expression of DNA methyltransferases (DNMTs) or the formation of a new DNMT containing complex. In addition, these ROS-induced DNA methylation pattern alterations have been implicated with not only malignant transformation, but also the progression of numerous tumors. In conclusion, ROS can influence both aspects of DNA methylation changes through different mechanisms, which play an important role of epigenetic regulation in cancer cells. Therefore, the comprehension of mechanisms leading to epigenetic modifications associated with ROS may help better understand the carcinogenesis and progression, as well as aid in the development of potential biomarkers for better cancer diagnostics and novel therapeutic strategies.
Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen-positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.