Atherosclerosis is a chronic disease characterized by the deposition of excessive cholesterol in the arterial intima. Macrophage foam cells play a critical role in the occurrence and development of atherosclerosis. The generation of these cells is associated with imbalance of cholesterol influx, esterification and efflux. CD36 and scavenger receptor class A (SR-A) are mainly responsible for uptake of lipoprotein-derived cholesterol by macrophages. Acyl coenzyme A:cholesterol acyltransferase-1 (ACAT1) and neutral cholesteryl ester hydrolase (nCEH) regulate cholesterol esterification. ATP-binding cassette transporters A1(ABCA1), ABCG1 and scavenger receptor BI (SR-BI) play crucial roles in macrophage cholesterol export. When inflow and esterification of cholesterol increase and/or its outflow decrease, the macrophages are ultimately transformed into lipid-laden foam cells, the prototypical cells in the atherosclerotic plaque. The aim of this review is to describe what is known about the mechanisms of cholesterol uptake, esterification and release in macrophages. An increased understanding of the process of macrophage foam cell formation will help to develop novel therapeutic interventions for atherosclerosis.
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the “tissue engineering” concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as “regenerative engineering”. In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. We highlight the exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration. In particular, we concentrate our attention on the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.