The flag curvature of a Finsler metric is called a Riemannian quantity because it is an extension of sectional curvature in Riemannian geometry. In Finsler geometry, there are several non-Riemannian quantities such as the (mean) Cartan torsion, the (mean) Landsberg curvature and the Scurvature, which all vanish for Riemannian metrics. It is important to understand the geometric meanings of these quantities. In this paper, we study Finsler metrics of scalar curvature (i.e., the flag curvature is a scalar function on the slit tangent bundle) and partially determine the flag curvature when certain non-Riemannian quantities are isotropic. Using the obtained formula for the flag curvature, we classify locally projectively flat Randers metrics with isotropic S-curvature.
In this paper, we find some solutions to a system of partial differential equations that characterize the projectively flat Finsler metrics. Further, we discover that some of these metrics actually have the zero flag curvature.
Abstract. This paper is devoted to a study of geodesics of Finsler metrics via Zermelo navigation. We give a geometric description of the geodesics of the Finsler metric produced from any Finsler metric and any homothetic field in terms of navigation representation, generalizing a result previously only known in the case of Randers metrics with constant S-curvature. As its application, we present explicitly the geodesics of the Funk metric on a strongly convex domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.