Chemical vapor deposition (CVD) provides a synthesis route for large‐area and high‐quality graphene films. However, layer‐controlled synthesis remains a great challenge on polycrystalline metallic films. Here, a facile and viable synthesis of layer‐controlled and high‐quality graphene films on wafer‐scale Ni surface by the sequentially separated steps of gas carburization, hydrogen exposure, and segregation is developed. The layer numbers of graphene films with large domain sizes are controlled precisely at ambient pressure by modulating the simplified CVD process conditions and hydrogen exposure. The hydrogen exposure assisted with a Ni catalyst plays a critical role in promoting the preferential segregation through removing the carbon layers on the Ni surface and reducing carbon content in the Ni. Excellent electrical and transparent conductive performance, with a room‐temperature mobility of ≈3000 cm2 V−1 s−1 and a sheet resistance as low as ≈100 Ω per square at ≈90% transmittance, of the twisted few‐layer grapheme films grown on the Ni catalyst is demonstrated.
Trifluoromethylthiolated molecules are an important class of biologically active compounds and potential drug candidates. Because of the lack of efficient synthetic methods, catalytic enantioselective construction of these molecules is rare and remains a challenge. To expand this field, we herein disclose a bifunctional selenide-catalyzed approach for the synthesis of various chiral trifluoromethylthiolated tetrahydronaphthalenes bearing an all-carbon quaternary stereocenter with gem-diaryl-tethered alkenes and alkynes by merging desymmetrization and trifluoromethylthiolation strategy. The products are obtained in high yields with excellent enantio- and diastereo-selectivities. This method can be applied to the desymmetrization and sulfenylation of diols as well. Computational studies reveal that selenide can activate the electrophilic reagent better than sulfide, confirming the higher efficiency of selenide catalysis in these reactions. On the basis of the theoretical calculations, an acid-derived anion-binding interaction is suggested to exist in the whole pathway and accounts for the observed high selectivities.
Ab road-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of acatalytic amount of 1-hydroxybenzotriazole(HOBt) and silicon additives,amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably,t his protocol is particularly efficient for sterically hindered substrates.Catalyst loading is generally low and only 0.02 mol %o fc atalyst is required for the multidecagram-scale synthesis of an amantadine derivative.Inaddition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via ak ey intermediate sulfonyl fluoride 13.S ince al arge number of amines are commercially available,t his route provides af acile entry to access Fedratinib analogues for biological screening.
Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.