Hypoxic–ischemic brain injury is an important cause of neonatal neurological deficits. Our previous study demonstrated that dexmedetomidine (Dex) provided neuroprotection against neonatal hypoxic brain injury; however, the underlying mechanisms remain incompletely elucidated. Overactivation of NADPH oxidase 2 (NOX2) can cause neuronal apoptosis and neurological deficits. Hence, we aimed to investigate the role of neuronal NOX2 in Dex-mediated neuroprotection and to explore its potential mechanisms. Hypoxic injury was modeled in neonatal rodents in vivo and in cultured hippocampal neurons in vitro. Our results showed that pre- or post-treatment with Dex improved the neurological deficits and alleviated the hippocampal neuronal damage and apoptosis caused by neonatal hypoxia. In addition, Dex treatment significantly suppressed hypoxia-induced neuronal NOX2 activation; it also reduced oxidative stress, as evidenced by decreases in intracellular reactive oxygen species (ROS) production, malondialdehyde, and 8-hydroxy-2-deoxyguanosine, as well as increases in the antioxidant enzymatic activity of superoxide dismutase and glutathione peroxidase in neonatal rat hippocampi and in hippocampal neurons. Lastly, the posthypoxicneuroprotective action of Dex was almost completely abolished in NOX2-deficient neonatal mice and NOX2-knockdown neurons. In conclusion, our data demonstrated that neuronal NOX2-mediated oxidative stress is involved in the neuroprotection that Dex provides against apoptosis and neurological deficits in neonates following hypoxia.
Neurodegenerative diseases and postoperative cognitive dysfunction (POCD) involve the accumulation of β-amyloid peptide (Aβ). High glucose can inhibit autophagy, which facilitates intracellular Aβ clearance.The α2-adrenoreceptor agonist dexmedetomidine (DEX) can provide neuroprotection against several neurological diseases; however, the mechanism remains unclear. This study investigated whether DEX regulated autophagy via the AMPK/mTOR pathway to improve high glucose-induced neurotoxicity in SH-SY5Y/APP695 cells. SH-SY5Y/APP695 cells were cultured with high glucose with/without DEX. To examine the role of autophagy, the autophagy activator rapamycin (RAPA) and the autophagy inhibitor 3methyladenine (3-MA) were used. The selective AMPK inhibitor compound C was used to investigate the involvement of the AMPK pathway. Cell viability and apoptosis were examined by CCK-8 and annexin V-FITC/PI ow cytometric assays, respectively. Autophagy was analyzed by monodansylcadaverine (MDC) staining of autophagic vacuoles. Autophagy-and apoptosis-related protein expression and the phosphorylation levels of AMPK/mTOR pathway molecules were quanti ed by western blotting. DEX pretreatment signi cantly suppressed high glucose-induced neurotoxicity in SH-SY5Y/APP695 cells, as evidenced by the enhanced viability, restoration of cellular morphology, and reduction in apoptotic cells.Furthermore, RAPA had a protective effect similar to that of DEX, but 3-MA eliminated the protective effect of DEX by promoting mTOR activation. Moreover, the AMPK/mTOR pathway involved DEX-mediated autophagy. Compound C signi cantly suppressed autophagy and reversed the protective effect of DEX against high glucose in SH-SY5Y/APP695 cells. Our ndings demonstrated that DEX protected SH-SY5Y/APP695 cells against high glucose-induced neurotoxicity by upregulating autophagy through the AMPK/mTOR pathway, suggesting a role of DEX in treating POCD in diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.