Current social-network-based and location-based-service applications need to handle continuous spatial approximate keyword queries over geo-textual streaming data of high density. The continuous query is a well-known expensive operation. The optimization of continuous query processing is still an open issue. For geo-textual streaming data, the performance issue is more serious since both location information and textual description need to be matched for each incoming streaming data tuple. The state-of-the-art continuous spatial-keyword query indexing approaches generally lack both support for approximate keyword matching and high-performance processing for geo-textual streaming data. Aiming to tackle this problem, this paper first proposes an indexing approach for efficient supporting of continuous spatial approximate keyword queries by integrating m i n - w i s e signatures into an AP-tree, namely AP-tree + . AP-tree + utilizes the one-permutation m i n - w i s e hashing method to achieve a much lower signature maintenance costs compared with the traditional m i n - w i s e hashing method because it only employs one hashing function instead of dozens. Towards providing a more efficient indexing approach, this paper has explored the feasibility of parallelizing AP-tree + by employing a Graphic Processing Unit (GPU). We mapped the AP-tree + data structure into the GPU’s memory with a variety of one-dimensional arrays to form the GPU-aided AP-tree + . Furthermore, a m i n - w i s e parallel hashing algorithm with a scheme of data parallel and a GPU-CPU data communication method based on a four-stage pipeline way have been used to optimize the performance of the GPU-aided AP-tree + . The experimental results indicate that (1) AP-tree + can reduce the space cost by about 11% compared with MHR-tree, (2) AP-tree + can hold a comparable recall and 5.64× query performance gain compared with MHR-tree while saving 41.66% maintenance cost on average, (3) the GPU-aided AP-tree + can attain an average speedup of 5.76× compared to AP-tree + , and (4) the GPU-CPU data communication scheme can further improve the query performance of the GPU-aided AP-tree + by 39.4%.
Texture classification is an important topic for many applications in machine vision and image analysis, and Gabor filter is considered one of the most efficient tools for analyzing texture features at multiple orientations and scales. However, the parameter settings of each filter are crucial for obtaining accurate results, and they may not be adaptable to different kinds of texture features. Moreover, there is redundant information included in the process of texture feature extraction that contributes little to the classification. In this paper, a new texture classification technique is detailed. The approach is based on the integrated optimization of the parameters and features of Gabor filter, and obtaining satisfactory parameters and the best feature subset is viewed as a combinatorial optimization problem that can be solved by maximizing the objective function using hybrid ant lion optimizer (HALO). Experimental results, particularly fitness values, demonstrate that HALO is more effective than the other algorithms discussed in this paper, and the optimal parameters and features of Gabor filter are balanced between efficiency and accuracy. The method is feasible, reasonable, and can be utilized for practical applications of texture classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.