Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.
A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.
The porous three-dimensional (3-D) flower structures assembled by numerous ultrathin flakes were favor for strengthen electromagnetic absorption capability. However, it still remains a big challenge to fabricate such kind of materials. In this study, an easy and flexible two-step method consisting of hydrothermal and subsequent annealing process have been developed to synthesize the porous 3-D flower-like Co/CoO. Interestingly, we found that the suitable heat treatment temperature played a vital role on the flower-like structure, composition, and electromagnetic absorption properties. In detail, only in the composite treated with 400 °C can we gain the porous 3-D flower structure. If the annealing temperature were heated to 300 °C, the Co element was unable to generate. Moreover, when the annealing temperature increased from 400 to 500 °C, these flower-like structures were unable to be kept because the enlarged porous diameter would wreck the flower frame. Moreover, these 3-D porous flower-like structures presented outstanding electromagnetic absorption properties. For example, such special structure enabled an optimal reflection loss value of -50 dB with the frequency bandwidth ranged from 13.8 to 18 GHz. The excellent microwave absorption performance may attribute to the high impedance matching behavior and novel dielectric loss ability. Additionally, it can be supposed that this micrometer-size flower structure was more beneficial to scatter the incident electromagnetic wave. Meanwhile, the rough surface of the ultrathin flake is apt to increase the electromagnetic scattering among the leaves of the flower due to their large spacing and porous features.
The surface defects of solution-processed ZnO films lead to various intragap states. When the solution-processed ZnO films are used as electron transport interlayers (ETLs) in inverted organic solar cells, the intragap states act as interfacial recombination centers for photogenerated charges and thereby degrade the device performance. Here we demonstrate a simple surface-passivation method based on ethanedithiol (EDT) treatment, which effectively removes the surface defects of the ZnO nanocrystal films by forming zinc ethanedithiolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.