It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC.
The mechanisms underlying the role of CXCL5 in tumor angiogenesis have not been fully defined. Here, we examined the effect of CXCL5 on tumor angiogenesis in colorectal cancer (CRC). Immunohistochemistry was used to monitor the expression of CXCL5 and CD31 in CRC patients’ tissues. HUVEC cell lines stably transfected with shCXCR2 and shFOXD1 lentivirus plasmids were used in an in vitro study. Based on some molecular biological experiments in vitro and in vivo, we found that CXCL5 was upregulated in tumor tissues and that its level positively correlated with the expression of CD31. Next, we used recombinant human CXCL5 (rhCXCL5) to stimulate HUVECs and found that their tube formation ability, proliferation, and migration were enhanced by the activation of the AKT/NF-κB/FOXD1/VEGF-A pathway in a CXCR2-dependent manner. However, silencing of CXCR2 and FOXD1 or inhibition of the AKT and NF-κB pathways could attenuate the tube formation ability, proliferation, and migration of rhCXCL5-stimulated HUVECs in vitro. rhCXCL5 can promote angiogenesis in vivo in Matrigel plugs, and the overexpression of CXCL5 can also increase microvessel density in vivo in a subcutaneous xenotransplanted tumor model in nude mice. Taken together, our findings support CXCL5 as an angiogenic factor that can promote cell metastasis through tumor angiogenesis in CRC. Furthermore, we propose that FOXD1 is a novel regulator of VEGF-A. These observations open new avenues for therapeutic application of CXCL5 in tumor anti-angiogenesis.
Summary Objective Parathyroid carcinoma (PC) is a rare disease which is difficult to diagnose preoperatively and predict prognosis. The goal of this study was to analyse the preoperative predictive factors and prognostic factors in PC patients and to evaluate the possibility of diagnosing PC preoperatively. Design, Setting and Patients This is a retrospective study from Jan 2000 to Aug 2015 conducted in Shanghai Ruijin Hospital. Measurements Comparisons were made between 40 parathyroid carcinoma patients and 282 patients with benign parathyroid lesions during the same period. All patients underwent parathyroid surgery, and the results were certified by paraffin pathology. Prognostic factors were analysed in the 40 PC patients. Results Patients with higher levels of intact parathyroid hormone (P < 0·001, OR = 1·001, CI: 1·000–1·002), calcium (P = 0·008, OR = 3·395, CI: 1·382–8·341) and a larger parathyroid volume (P = 0·001, OR = 2·023, CI: 1·333–3·071) were more likely to have PC. Local excision (P = 0·008, OR = 4·992, CI: 1·533–16·252), stage III in the Schulte staging system (P = 0·039, OR = 9·600, CI: 1·12–82·322), high risk in the Schulte Risk Classification (P = 0·012, OR = 5·466, CI: 1·448–20·628) and first surgery by other medical teams (P = 0·008, OR = 4·992, CI: 1·496–15·037) were associated with PC recurrence. Calcium (P = 0·01, OR = 7·270, CI: 1·611–32·812), intact parathyroid hormone (P = 0·037, OR = 1·001, CI: 1·000–1·001), local excision (P = 0·009, OR = 6·875, CI: 1·633–28·936) and recurrence (P = 0·014, OR = 7·762, CI: 1·504–40·055) were associated with death. Conclusions A preoperative diagnostic system may provide a new method to distinguish PC from benign parathyroid lesions before surgery. For PC patients who did not undergo en‐bloc resection at first operation, timely further surgery may offer a second chance of cure. Early diagnosis and surgery are pivotal to reduce mortality in PC patients.
Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the invasive phenotype and become migratory, which is required for cancer progression and metastasis. In the present study, the expression of EMT-associated biomarkers and their association with clinicopathological parameters in laryngeal squamous cell carcinoma (LSCC) was investigated. E-cadherin, N-cadherin, β-catenin and zinc finger E-box binding homeobox 2 (ZEB2) protein expression was evaluated with immunohistochemistry in a cohort of 76 patients with operable LSCC. The association between these transition markers, clinicopathological parameters and their prognostic impact in LSCC was analyzed. Immunohistochemical analysis revealed that EMT-associated proteins were differentially expressed between LSCC and adjacent non-neoplastic laryngeal tissue. Negative E-cadherin expression and positive N-cadherin, β-catenin and ZEB2 expression were associated with a later tumor (T) stage, decreasing tumor differentiation and a reduced overall survival (OS) time (OS: E-cadherin, P=0.016; N-cadherin, P=0.003; β-catenin, P=0.002; ZEB2, P=0.0003). E-cadherin/β-catenin co-expression was significantly associated with the majority of clinicopathological parameters assessed, including lymph node metastases, T stage and tumor cell differentiation (P=0.004, P=0.005, and P<0.001, respectively). Multivariate analysis indicated that T stage and the positive expression of β-catenin and ZEB2 were independent risk factors for OS in LSCC (P=0.014, P=0.025 and P=0.003, respectively). It was concluded that EMT mediates tumor progression, and reduces OS time in patients with LSCC. E-cadherin/β-catenin co-expression may be associated with clinicopathological parameters. T stage, and the positive co-expression of β-catenin and ZEB2 may be independent predictors of prognosis in LSCC.
Oxidative stress and apoptosis-like programmed cell death, induced in part by H 2 O 2 , are two key factors that damage cells during plant cryopreservation. Their inhibition can improve cell viability. We hypothesized that oxidative stress and apoptosis-like event induced by ROS seriously impact plant cell viability during cryopreservation. This study documented changes in cell morphology and ultrastructure, and detected dynamic changes in ROS components (O 2 (·-) , H2O2 and OH·), antioxidant systems, and programmed cell death (PCD) events during embryonic callus cryopreservation of Agapanthus praecox. Plasmolysis, organelle ultrastructure changes, and increases in malondialdehyde (a membrane lipid peroxidation product) suggested that oxidative damage and PCD events occurred at several early cryopreservation steps. PCD events including autophagy, apoptosis-like, and necrosis also occurred at later stages of cryopreservation, and most were apoptosis. H2O2 is the most important ROS molecule mediating oxidative damage and affecting cell viability, and catalase and AsA-GSH cycle are involved in scavenging the intracellular H2O2 and protecting the cells against stress damage in the whole process. Gene expression studies verified changes of antioxidant system and PCD-related genes at the main steps of the cryopreservation process that correlated with improved cell viability. Reducing oxidative stress or inhibition of apoptosis-like event by deactivating proteases improved cryopreserved cell viability from 49.14 to 86.85 % and 89.91 %, respectively. These results verify our model of ROS-induced oxidative stress and apoptosis-like event in plant cryopreservation. This study provided a novel insight into cell stress response mechanisms in cryopreservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.