Dynamic Terrain is becoming more and more important in ground-based simulation systems. In military simulation systems, craters and ruts can improve the reality. In this paper, a dynamic terrain visualization method based on quadtree and multi-resolution voxel is presented in order to realize the real-time rendering for realistic craters in battlefield. Quadtree is selected as our basic data structure and mix-subdivided according to the size of the terrain. Scene tree is recursive subdivided according to both the distance between the node and camera and error criterion. Vertex is removed to solve the cracks and linear interpolation to solve popping in the algorithm. We also implement the visualization of craters through combining our algorithm with the physical model of craters based on multi-resolution voxel. The implementation results prove that the method are feasible and efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.