Abstract. In numerical weather prediction (NWP) models, physical parameterization schemes are the most computationally expensive components, despite being greatly simplified. In the past few years, an increasing number of studies have demonstrated that machine learning (ML) parameterizations of subgrid physics have the potential to accelerate and even outperform conventional physics-based schemes. However, as the ML models are commonly implemented using the ML libraries written in Python, very few ML-based parameterizations have been successfully integrated with NWP models due to the difficulty of embedding Python functions into Fortran-based NWP models. To address this issue, we developed a coupler to allow the ML-based parameterizations to be coupled with a widely used NWP model, i.e., the Weather Research and Forecasting (WRF) model. Similar to the WRF I/O methodologies, the coupler provides the options to run the ML model inference with exclusive processors or the same processors for WRF calculations. In addition, to demonstrate the effectiveness of the coupler, the ML-based radiation emulators are trained and coupled with the WRF model successfully.
The atmospheric radiative transfer calculations are among the most time‐consuming components of the numerical weather prediction (NWP) models. Deep learning (DL) models have recently been increasingly applied to accelerate radiative transfer modeling. Besides, a physical relationship exists between the output variables, including fluxes and heating rate profiles. Integration of such physical laws in DL models is crucial for the consistency and credibility of the DL‐based parameterizations. Therefore, we propose a physics‐incorporated framework for the radiative transfer DL model, in which the physical relationship between fluxes and heating rates is encoded as a layer of the network so that the energy conservation can be satisfied. It is also found that the prediction accuracy was improved with the physic‐incorporated layer. In addition, we trained and compared various types of DL model architectures, including fully connected (FC) neural networks (NNs), convolutional‐based NNs (CNNs), bidirectional recurrent‐based NNs (RNNs), transformer‐based NNs, and neural operator networks, respectively. The offline evaluation demonstrates that bidirectional RNNs, transformer‐based NNs, and neural operator networks significantly outperform the FC NNs and CNNs due to their capability of global perception. A global perspective of an entire atmospheric column is essential and suitable for radiative transfer modeling as the changes in atmospheric components of one layer/level have both local and global impacts on radiation along the entire vertical column. Furthermore, the bidirectional RNNs achieve the best performance as they can extract information from both upward and downward directions, similar to the radiative transfer processes in the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.