Background: Cadherin-5 (CDH5) is aberrantly expressed in a variety of human cancers and plays an important role in angiogenesis. But its role in renal clear cell carcinoma (ccRCC) remains to be understood. Methods: The dysregulation of CDH5 expression in ccRCC and its association with clinicopathological characteristics were analyzed using the TCGA database. A meta-analysis was performed to verify the alteration of CDH5 expression in ccRCC using the GEO database. Quantitative RT-PCR and immunohistochemical staining were applied to assess the transcriptional and protein levels of CDH5. TargetScan and Tarbase were employed to predict the miRNAs with the potential to target mRNA of CDH5.Results: The mRNA level of CDH5 in ccRCC was significantly higher than in normal tissue. CDH5 mRNA expression could therefore serve as a potential diagnostic biomarker for ccRCC (AUC=0.844). However, the reduced CDH5 transcription levels were significantly correlated with patients in the T3-4 stage, lymph node and distant metastasis, as well as with a worse clinical outcome. We further observed that CDH5, at the protein level, was almost absent in ccRCC samples. In addition, a few databases screen showed that mir-27a-3p, is a highly conserved miRNA targeting CDH5. The expression of mir-27a-3p was significantly elevated in ccRCC tissues in contrast to normal tissues. Importantly, it was positively associated with the T3-4 stage and M stage, respectively, suggesting that the expression level of mir-27a-3p could serve as a diagnostic biomarker for ccRCC (AUC=0.775).Conclusion: Our data suggest that the reduced translational levels of CDH5 in ccRCC was related to the overexpression of mir-27a-3p. The higher mir-27a-3p and lower CDH5 expression significantly correlated with advanced clinical stages for ccRCC patients.
Background Acy1 Coenzyme A Acyltransferases1 (ACAT1) is a key enzyme in the metabolism of ketone bodies, but its expression and biological function in the pathogenesis of NPC remains underexplored. Methods The mRNA and protein expression levels of ACAT1 in NPC and normal control tissues were analyzed by qPCR and immunohistochemistry staining, respectively. GEO database was applied for meta-analysis of ACAT1 mRNA expression and DNA promoter methylation. The role of ACAT1 in NPC proliferation was examined by CCK8 and colony formation assays in vitro and tumorigenicity in vivo. The wound healing and transwell assays were used for analyzing the migratory and invasive ability. cDNA microarray analysis was performed to identify the genes involved in epithelial-mesenchymal transition and dysregulated by ACAT1. These changes were further confirmed by western blot. Results We found that ACAT1 is inactivated in NPC cell lines and primary tissues. DNA microarray data showed higher methylation in the CpG island region of ACAT1 in NPC than normal tissues. The demethylating reagent 5-aza-dC significantly restored the transcription of ACAT1 in NPC cell lines, suggesting that ACAT1 was inactivated by DNA promoter hypermethylation. Ectopic overexpression of ACAT1 remarkably suppressed the proliferation and colony formation of NPC cells in vitro. As well, the tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. In addition, the migratory and invasive capacities of NPC cells was inhibited by ACAT1 overexpression. Importantly, the higher level of ACAT1 was accompanied by an increased expression of CDH1, EPCAM, and a decreased expression of vimentin and SPARC. This strongly indicates that ACAT1 is able to affect the epithelial-mesenchymal transition in NPC, thereby controlling cellular motility. In addition, we found that ACAT1 expression increases the intracellular level of β-HB. Moreover, exogenous β-HB remarkably inhibits the growth of NPC cells in a dose-dependent manner. Conclusions We have discovered that the ketone body metabolism enzyme ACAT1 is epigenetically downregulated in NPC and acts as a potential tumor suppressor in NPC. Our findings highlight the possibility of using the modulation of ketone body metabolism as effective adjuvant therapy for NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.