We previously reported the dual effects of nobiletin, a compound of polymethoxy flavones found in citrus fruits, on catecholamine secretion in cultured bovine adrenal medullary cells. Here, we report the effects of nobiletin on catecholamine synthesis in the cells. Nobiletin increased the synthesis of (14)C-catecholamines from [(14)C]tyrosine in a time (20-30 min)- and concentration (1.0-100 μM)-dependent manner. Nobiletin (10-100 μM) also activated tyrosine hydroxylase activity. The stimulatory effect of nobiletin on (14)C-catecholamine synthesis was not observed when extracellular Ca(2+) was not present in the incubation medium. Protein kinase inhibitors including H-89, an inhibitor of cyclic AMP-dependent protein kinase, and KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, suppressed the stimulatory effects of nobiletin on catecholamine synthesis as well as tyrosine hydroxylase activity. Nobiletin also induced the phosphorylation of tyrosine hydroxylase at Ser(19) and Ser(40). Nobiletin (1.0-100 μM) inhibited (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that nobiletin, by itself, stimulates catecholamine synthesis through tyrosine hydroxylase phosphorylation at Ser(19) and Ser(40), whereas it inhibits catecholamine synthesis induced by acetylcholine in bovine adrenal medulla.
Herbs have many biologically and pharmacologically active compounds such as flavonoids and stilbenes. They have been used in remedies for various disorders. Here we review the effects of herbs on catecholamine synthesis and secretion in cultured bovine adrenal medullary cells. Ikarisoside A (1.0-100 μM), a flavonol glycoside, inhibited the catecholamine secretion induced by acetylcholine (0.3 mM). This inhibition was associated with the suppression of 22 Na + and 45 Ca 2+ influx induced by acetylcholine. The ethanol extract (0.0003-0.005%) of matsufushi (extract of pine nodules) inhibited the catecholamine secretion induced by acetylcholine. SJ-2, one of the stilbene compounds isolated from matsufushi, inhibited acetylcholine-induced catecholamine secretion. Matsufushi extract and SJ-2 reversibly inhibited acetylcholine-induced Na + currents in Xenopus oocytes expressed with α3β4nicotinic acetylcholine receptors. Sweet tea is the processed leaves of Hydrangea macrophylla. The extract of sweet tea (0.3-1.0 mg/ml) suppressed catecholamine secretion induced by acetylcholine (0.3 mM). Moreover, sweet tea (0.1-1.0 mg/ml), ikarisoside A (1.0-100 μM), and matsufushi (0.001-0.003%) or SJ-2 (10-30 μM) inhibited acetylcholine-induced 14 C-catecholamine synthesis from 14 C-tyrosine. These findings indicate that ikarisoside A, matsufushi (or SJ-2), and sweet tea inhibit the catecholamine secretion and synthesis induced by acetylcholine in cultured bovine adrenal medullary cells and probably in sympathetic neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.