We propose a multi-region two-stream R-CNN model for action detection in realistic videos. We start from frame-level action detection based on faster R-CNN [1], and make three contributions: (1) we show that a motion region proposal network generates high-quality proposals, which are complementary to those of an appearance region proposal network; (2) we show that stacking optical flow over several frames significantly improves frame-level action detection; and (3) we embed a multi-region scheme in the faster R-CNN model, which adds complementary information on body parts. We then link frame-level detections with the Viterbi algorithm, and temporally localize an action with the maximum subarray method. Experimental results on the UCF-Sports, J-HMDB and UCF101 action detection datasets show that our approach outperforms the state of the art with a significant margin in both frame-mAP and video-mAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.