Background. Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods. After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results. In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion. Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).
Isoflurane (ISO) is a type of anesthetic that might cause neurotoxicity in children. Although miR-424-5p is considerably downregulated in ISO-treated rat brain samples, its physiological role in ISO-induced neuronal injury in human embryonic stem cell-derived neurons remains unknown (hESC-derived neurons). miR-424-5p expression and fatty acid synthase (FASN) in ISO-treated hESC-derived neurons were tested via qRT-PCR. The amount of protein for Bax, Cleaved-caspase-8, Bcl-2, and FASN was investigated through western blot analysis. The viability and apoptosis of hESC-derived neurons were estimated through cell counting kit-8 assessment and TUNEL assay, accordingly. Superoxide dismutase, glutathione, and malondialdehyde levels were discovered via corresponding kits. The contents of inflammatory factors including interleukin-6 and tumor necrosis factor-α were examined by enzyme-linked immunosorbent assays. The combination between FASN and miR-424-5p was resolute via dual-luciferase reporter assessment. After exposure to ISO, induced neurotoxicity and a decreased miR-424-5p production were identified in hESC-derived neurons. Upregulation of miR-424-5p repressed ISO-induced apoptosis and mitigated ISO-induced inflammatory response and oxidative stress in vitro. FASN expression levels were reduced by elevation of miR-424-5p and upregulated after ISO treatment. Mechanically, FASN was directly targeted by miR-424-5p in hESC-derived neurons. Of note, the miR-424-5p elevation-suppressed neuronal apoptosis, inflammatory response, and oxidative stress were countered by upregulation of FASN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.