Previous studies suggested a possible gut microbiota dysbiosis in chronic heart failure (CHF). However, direct evidence was lacking. In this study, we investigated the composition and metabolic patterns of gut microbiota in CHF patients to provide direct evidence and comprehensive understanding of gut microbiota dysbiosis in CHF. We enrolled 53 CHF patients and 41 controls. Metagenomic analyses of faecal samples and metabolomic analyses of faecal and plasma samples were then performed. We found that the composition of gut microbiota in CHF was significantly different from controls. Faecalibacterium prausnitzii decrease and Ruminococcus gnavus increase were the essential characteristics in CHF patients’ gut microbiota. We also observed an imbalance of gut microbes involved in the metabolism of protective metabolites such as butyrate and harmful metabolites such as trimethylamine N-oxide in CHF patients. Metabolic features of both faecal and plasma samples from CHF patients also significantly changed. Moreover, alterations in faecal and plasma metabolic patterns correlated with gut microbiota dysbiosis in CHF. Taken together, we found that CHF was associated with distinct gut microbiota dysbiosis and pinpointed the specific core bacteria imbalance in CHF, along with correlations between changes in certain metabolites and gut microbes.
The activation of the Ras/p38 MAPK/CREB pathway is required for AngII-induced periostin expression. ERK1/2 also participates in AngII-induced periostin expression by regulating TGF-β1/Smad signalling.
The Pak4 serine/threonine kinase is highly expressed in many cancer cell lines and human tumors. While several studies have addressed the role for Pak4 in transformation of fibroblasts, most human cancers are epithelial in origin. Epithelial cancers are associated not only with changes in cell growth, but also with changes in the cellular organization within the three dimensional (3D) architecture of the affected tissues. Here we used immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the role for Pak4 in mammary tumorigenesis. iMMECs are an excellent model system for studying breast cancer they can grow in 3D-epithelial cell culture, where they form acinar structures that recapitulate in vivo mammary morphogenesis. While Pak4 is expressed at low levels in wild type iMMECs, it is overexpressed in response to oncogenes, such as oncogenic Ras and Her2/neu. Here we found that overexpression of Pak4 in iMMECs leads to changes in 3D acinar architecture that are consistent with oncogenic transformation. These include decreased central acinar cell death, abrogation of lumen formation, cell polarity alterations, and deregulation of acinar size and cell number. Furthermore, iMMECs overexpressing Pak4 form tumors when implanted into the fat pads of athymic mice. Our results suggest that overexpression of Pak4 triggers events that are important for the transformation of mammary epithelial cells. This is likely to be due to the ability of Pak4 to inhibit apoptosis and promote cell survival, and thus subsequent uncontrolled proliferation, and to its ability to deregulate cell shape and polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.