Botulinum neurotoxins (BoNTs) are among the most toxic proteins. Vaccination is an effective strategy to prevent botulism. To generate a vaccine suitable for human use, a recombinant non-His-tagged isoform of the Hc domain of botulinum neurotoxin serotype E (rEHc) was expressed in Escherichia coli and purified by sequential chromatography. The immunogenicity of rEHc was evaluated in mice and doseand time-dependent immune responses were observed in both antibody titers and protective potency. Then, the pilot-scale expression and purification of rEHc were performed, and its immunological activity was characterized. Our results showed rEHc has good immunogenicity and can elicit strong protective potency against botulinum neurotoxin serotype E (BoNT/E) in mice, indicating that rEHc is an effective botulism vaccine candidate. Further, we developed a novel antitoxin against BoNT/E by purifying F(abʹ) 2 from pepsin-digested serum IgG of rEHc-inoculated horses. The protective effect of the F(abʹ) 2 antitoxin was determined in vitro and in vivo. The results showed that our F(abʹ) 2 antitoxin can prevent botulism in BoNT/E-challenged mice and effectively alleviate the progression of paralysis caused by BoNT/E to achieve therapeutic effects. Therefore, our results provide valuable experimental data for the production of a novel antitoxin, which is a promising candidate for the treatment of BoNT/E-induced botulism. ARTICLE HISTORY
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and T cell hyper-activation. Emerging evidence has shown that the stimulation of immunoglobulin D (IgD) induces T cell activation and may contribute to disease pathogenesis. In this study, the sIgD concentrations were positively associated with disease activity score in 28 joints (DAS28) and anti-cyclic citrullinated peptide (anti-CCP) in RA. We demonstrated that IgD-Fc-Ig (composed of human IgD Fc domain and IgG 1 Fc domain, obtained through prokaryotic protein expression and chromatography purification) effectively inhibited the activation and proliferation of T cells in healthy controls and PBMCs in RA patients stimulated by IgD, recovered the Th17/Treg cell subset balance, and downregulated p-Lck and p-ZAP70 expression. Moreover, in vivo, IgD-Fc-Ig decreased the swollen joint counts and arthritis indices in mice with collagen-induced arthritis (CIA), and ameliorated histopathological changes in joint and spleen tissue. It also downregulated thymocyte proliferation and reduced the percentage of helper T cells (Th) and CD154 + T cells, reversed the imbalance of Th1/Th2 and Th17/Treg cell subsets, reduced cytokine and chemokine levels, and inhibited p-Lck and p-ZAP70 expression. Our data suggest that IgD-Fc-Ig fusion protein regulates T cell activity in RA. These findings have potential implications for IgD-targeted strategies to treat IgD-associated RA.
Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4+ T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4+ T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4+ T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr394). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4+ T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr394) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4+ T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.