Background High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. Results Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. Conclusions Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.
The chemical insecticide flonicamid is widely used to control aphids on crops. Differences among crops make the universality of detection methods a particularly important consideration. The aim of this study was to establish a universal, sensitive, accurate and efficient method for the determination of flonicamid residues in peach, cucumber, cabbage and cotton. QuEChERS pretreatment was combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A satisfactory recovery rate of 84.3–99.3% was achieved at three spiking levels, and the relative standard deviation (RSD) was 0.41–5.95%. The limit of quantification (LOQ) of flonicamid in the four matrices was 0.01 mg/kg. The residue and dissipation kinetics of flonicamid in four types of crops in various locations were determined by using the optimized method. The results showed that flonicamid had a high dissipation rate in the four different types of crops and a half-life in the different matrices and locations of 2.28–9.74 days. The terminal residue of flonicamid was lower than the maximum residue limit (MRL). The risk quotient (RQ) of flonicamid was 4.4%, which is significantly lower than 100%. This result shows that the dietary risk presented by using flonicamid at the maximum recommended dose is low and acceptable. The comprehensive long-term dietary risk assessment of flonicamid performed in this study provides a reference for the protection of consumer health and safe insecticide use.
Background: High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, including the crude drug known as wolfberry. However, the mechanistic basis of this action in wolfberry is not fully understood yet.Results: Here in this study, we studied potentials different mechanisms in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome and metabolome. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal conditions, but increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the enriched salinity-responsive genes in wolfberry were mainly related to MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid content than LC under normal conditions. However, when exposed to salinity stress, flavone and flavonoid content hardly changed in LR, whereas flavonoid and flavone biosynthesis was activated to resist to salinity stress in LC.Conclusions: Our results adds ABA and flavone metabolism to mechanistic understanding of salinity tolerance in wolfberry. In addition, flavone play a positive role in resistance to salinity stress in wolfberry.
Pesticide residue has become the main technical barrier that restricts the export of Chinese wolfberry. Can we achieve high efficacy and low safety risk by balancing pesticide deposition on the leaves and fruits of Chinese wolfberry? In this research, the structural characteristics and wettability of leaves and fruits of Chinese wolfberry at different growth stages were studied. The adaxial and abaxial surfaces of leaves were hydrophobic, whereas the fruit surfaces were hydrophilic. Adding spray adjuvant could increase the retention of droplets on the leaf surfaces of Chinese wolfberry by 52.28–97.89% and reduce the retention on the fruit surfaces by 21.68–42.14%. A structural equation model analysis showed that the adhesion tension was the key factor affecting the retention of the solutions among various interface behaviors. When the concentrations of Silwet618, AEO-5, Gemini 31551, and 1227 were 2–5 times higher than their CMCs, the retention of pesticide solutions (pyraclostrobin and tylophorine) on Chinese wolfberry leaves significantly increased, and the control efficacies on aphids and powdery mildew also dramatically improved (65.90–105.15 and 41.18–133.06%, respectively). Meanwhile, the retention of pesticides on the fruit of Chinese wolfberry was reduced. This study provides new insights into increasing the utilization of pesticides in controlling pests and improving food safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.