Cytospora species are capable of causing destructive cankers of stems belonging to a wide range of woody plant species. In severe cases, cankers may lead to dieback of twigs and branches. Little is known about the Cytospora species causing canker disease of wild apple (Malus sieversii) trees in the Wild Fruit Forest Reserve in Tianshan Forest, Xinjiang Uygur Autonomous Region, China. In this study, six Cytospora isolates belonging to two species were isolated from cankerous lesions of wild apple twigs. Based on multi‐locus phylogenetic analysis using three DNA markers (ITS, tef1‐α and tub2) and morphological characterization, these isolates were identified as Cytospora mali and Cytospora parasitica. Temperature trials (15, 20, 25 and 30°C) showed that the optimal growth temperature for six isolates was 25°C. At a variety of temperatures, C. mali isolates tended to grow faster than isolates of C. parasitica, with the C. mali isolate, EGI1 performing better than others with regard to growth rate. Morphological observations showed that these species exhibited a single locule without conceptacles, and the conidia length was 3–5 μm. In vitro inoculation trials of twigs and leaves of M. sieversii seedlings revealed that the C. mali isolates were highly virulent phytopathogenic fungi, whereas the C. parasitica isolates were less virulent. The isolate EGI1 was the most virulent isolate among the six isolates. This paper presents the first report of pathogenic Cytospora spp. of the M. sieversii Tianshan Wild Fruit Forest Reserve of Yili, Xinjiang in China. It will aid in the understanding of how apple tree cankers are induced and provide disease management guidelines for M. sieversii forest conservation.
Background Cytospora canker is a serious disease in the stem of Malus sieversii, caused by Cytospora mali. However, little is known about the global response mechanism in M. sieversii to C. mali infection. Results Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen C. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8,139 were DETs. Total 1,336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3,780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of C. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to C. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen C. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.
Background: Cytospora canker is a serious disease in the stem of Malus sieversii, caused by Cytospora mali. However, little is known about the global response mechanism in M. sieversii to C. mali infection. Results: Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen C. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8,139 were DETs. Total 1,336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3,780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of C. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions: The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to C. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen C. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.