BackgroundGlobally, diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. As the most common microvascular complication of diabetes, DKD is a thorny, clinical problem in terms of its diagnosis and management. Intensive glucose control in DKD could slow down but not significantly halt disease progression. Revisiting the tremendous advances that have occurred in the field would enhance recognition of DKD pathogenesis as well as improve our understanding of translational science in DKD in this new era.Scope of reviewIn this review, we summarize advances in the understanding of the local microenvironmental changes in diabetic kidneys and discuss the involvement of genetic and epigenetic factors in the pathogenesis of DKD. We also review DKD prevalence changes and analyze the challenges in optimizing the diagnostic approaches and management strategies for DKD in the clinic. As we enter the era of ‘big data’, we also explore the possibility of linking systems biology with translational medicine in DKD in the current healthcare system.Major conclusionNewer understanding of the structural changes of diabetic kidneys and mechanisms of DKD pathogenesis, as well as emergent research technologies will shed light on new methods of dealing with the existing clinical challenges of DKD.
BackgroundFibroblast growth factor 21 (FGF21) is a hepatic hormone involved in the regulation of lipid and carbohydrate metabolism. This study aims to test the hypothesis that elevated FGF21 concentrations are associated with the change of renal function and the presence of left ventricular hypertrophy (LVH) in the different stages of chronic kidney disease (CKD) progression.Methodology/Principal Findings240 subjects including 200 CKD patients (146 outpatients and 54 long-term hemodialytic patients) and 40 healthy control subjects were recruited. All CKD subjects underwent echocardiograms to assess left ventricular mass index. Plasma FGF21 levels and other clinical and biochemical parameters in all subjects were obtained based on standard clinical examination methods. Plasma FGF21 levels were significantly increased with the development of CKD from early- and end-stage (P<0.001 for trend), and significantly higher in CKD subjects than those in healthy subjects (P<0.001). Plasma FGF21 levels in CKD patients with LVH were higher than those in patients without LVH (P = 0.001). Furthermore, plasma FGF21 level correlated positively with creatinine, blood urea nitrogen (BUN), β2 microglobulin, systolic pressure, adiponectin, phosphate, proteinuria, CRP and triglyceride, but negatively with creatinine clearance rate (CCR), estimated glomerular filtrate rate (eGFR), HDL-c, LDL-c, albumin and LVH after adjusting for BMI, gender, age and the presence of diabetes mellitus. Multiple stepwise regression analyses indicated that FGF21 was independently associated with BUN, Phosphate, LVMI and β2 microglobulin (all P<0.05).ConclusionPlasma FGF21 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with renal function and adverse lipid profiles in Chinese population. Understanding whether increased FGF21 is associated with myocardial hypertrophy in CKD requires further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.