The 2D/1D/0D Ti 3 C 2 T x /carbon nanotubes/Co nanocomposite is successfully synthesized via an electrostatic assembly.Nanocomposites exhibit an excellent electromagnetic wave absorption and a remarkable electromagnetic interference shielding efficiency.The flexible, waterproof, and photothermal conversion performances are achieved.ABSTRACT High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti 3 C 2 T x /carbon nanotubes/Co nanoparticles (Ti 3 C 2 T x /CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti 3 C 2 T x /CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti 3 C 2 T x /CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti 3 C 2 T x /CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.
Castration-resistant prostate cancer (CRPC) continues to be a major clinical problem and the mechanisms behind it remain unclear. Thioredoxin domain-containing protein 5 (TXNDC5) is involved in protein folding and chaperone activity, and its overexpression has been reported in multiple malignancies. In the current study, we demonstrated that TXNDC5 is up-regulated following long-term androgen-deprivation treatment (ADT) and is highly overexpressed in CRPC tumors compared with hormone-naive prostate cancer (PCa) cases. Functionally, in vitro and in vivo studies demonstrated that TXNDC5 overexpression promotes the growth of both androgen-dependent and castration-resistant PCa xenografts. Mechanistically, TXNDC5 directly interacts with the AR protein to increase its stability and thus enhances its transcriptional activity. TXDNC5-mediated CRPC growth can be fully abolished by AR inhibition, suggesting TXDNC5 up-regulation as an escape pathway for aberrant AR re-activation and CRPC growth in the milieu of low androgen. Indeed, we found that TXNDC5 is increased by ADT-induced hypoxia through HIF-1α in an miR-200b-dependent manner. Overall, we defined an important role of TXNDC5 in CRPC and further investigations are needed to screen TXNDC5 antagonists as a novel therapeutic approaches to treat PCa patients with CRPC.
With the progressive requirements of modern electronics, outstanding electromagnetic interference (EMI) shielding materials are extensively desirable to protect intelligent electronic equipment against EMI radiation under various conditions, while integrating functional applications. So far, it remains a great challenge to effectively construct thin films with diversiform frameworks as integrated shielding devices. To simultaneously promote electromagnetic waves (EMWs) attenuation and construct integrated multifunction, an alternating-layered deposition strategy is designed to fabricate polydimethylsiloxane packaged Ndoped MXene (Ti 3 CNT x )/graphene oxide wrapped hollow carbon fiber/silver nanowire films (p-LMHA) followed by annealing and encapsulation approaches. Contributed by the synergistic effect of consecutively conductive networks and porous architectures, LMHA films exhibit satisfying EMI shielding effectiveness of 73.2 dB at a thickness of 11 μm, with a specific EMI shielding effectiveness of 31 150.1 dB•cm 2 •g −1 . Benefiting from the encapsulation, p-LMHA films further impart hydrophobicity and reliability against harsh environments. Besides, p-LMHA devices integrate a rapid-response behavior of the electro/photothermal and, meanwhile, function as a healthcare monitoring sensor. Therefore, it is believed that the p-LMHA films assembled by independent conductive networks with reliability offer a facile solution for practical multimodular protection of devices with integration characteristics.
Inspired by the nature, lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites (GHPCM) were successfully fabricated through an in situ strategy. The biological microstructure of lotus leaf was well preserved after treatment. Different pores with gradient pore sizes ranging from 300 to 5 μm were hierarchically distributed in the composites. In addition, the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2. The GHPCM exhibit excellent electromagnetic wave absorption performance, with the minimum reflection loss of − 50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm. The outstanding performance could be attributed to the synergy of conductive loss, polarization loss, and impedance matching. In particularly, we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system. It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below − 10 dB within a certain frequency range. Furthermore, based on the concept of material genetic engineering, the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.