Germ cell maturation is essential for spermatogenesis and testis homeostasis. ATP synthase serves significant roles in energy storage in germ cell survival and is catalyzed by alterations in the mitochondrial membrane proton concentration. The intrinsic cellular mechanisms governing stem cell maturation remain largely unknown. In the present study, in vivo RNA interference (RNAi) screening of major ATP synthase subunits was performed, and the function of ATP synthase for male fertility and spermatogenesis in Drosophila was explored. A Upstream Activation Sequence/Gal4 transcription factor system was used to knock down gene expression in specific cell types, and immunofluorescence staining was conducted to assess the roles of ATP synthase subunits in Drosophila testes. It was identified that knockdown of ATP synthase resulted in male infertility and abnormal spermatogenesis in Drosophila testes. In addition, knockdown of the ATP synthase β subunit in germ cells resulted in defects in male infertility and germ cell maturation, while the hub and cyst cell populations were maintained. Other major ATP synthase subunits were also examined and similar phenotypes in Drosophila testes were identified. Taken together, the data from the present study revealed that ATP synthase serves important roles for male fertility during spermatogenesis by regulating germ cell maturation in Drosophila testes.
Development is the eternal theme of the times. However, the transformation of the development mode is imminent, and we should abandon the extensive economic development mode and turn to the efficient development of an intensive mode. The high-tech industry will be the decisive force in future industrial development. The agglomeration of the industry will help form economies of scale, thereby improving the effective allocation of resources and promoting productivity. The increase in green economy efficiency is a key factor in achieving green development and an important indicator of achieving the coordinated development of economic development and environmental protection. Therefore, in this study, we try to improve the efficiency of the green economy through industrial agglomeration to achieve green development. In order to solve this problem, we took the Yangtze River Economic Belt as the research object, used Super Slacks-based Measure (SBM) data envelopment analysis (DEA) and general algebraic modeling system (GAMS) to study the green economy efficiency, and then used the system generalized moment method (SGMM) to study the impact of high-tech industry agglomeration on green economy efficiency. According to the empirical test, we found that (1) the green economy efficiency of the Yangtze River Economic Belt shows a volatile upward trend, (2) the green economy efficiency of the Yangtze River Economic Belt differs with time and by region, (3) the agglomeration of the high-tech industry has a lagging effect on the improvement of green economy efficiency, and (4) the regression coefficients of economic development and foreign direct investment are positive and those of environmental regulation and urbanization are negative. Finally, in this paper, we provide corresponding policy recommendations to promote the agglomeration of high-tech industries, thereby improving the efficiency of the green economy.
Self-renewal and differentiation in germline stem cells (GSCs) are tightly regulated by the stem cell niche and via multiple approaches. In our previous study, we screened the novel GSC regulatory gene Srlp in Drosophila testes. However, the underlying mechanistic links between Srlp and the stem cell niche remain largely undetermined. Here, using genetic manipulation of the Drosophila model, we systematically analyze the function and mechanism of Srlp in vivo and in vitro. In Drosophila , Srlp is an essential gene that regulates the self-renewal and differentiation of GSCs in the testis. In the in vitro assay, Srlp is found to control the proliferation ability and cell death in S2 cells, which is consistent with the phenotype observed in Drosophila testis. Furthermore, results of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) reveal that RpL6 binds to Srlp. Srlp also regulates the expression of spliceosome and ribosome subunits and controls spliceosome and ribosome function via RpL6 signals. Collectively, our findings uncover the genetic causes and molecular mechanisms underlying the stem cell niche. This study provides new insights for elucidating the pathogenic mechanism of male sterility and the formation of testicular germ cell tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.