Chemoresistance is an inevitable occurrence in lung adenocarcinoma, which has been associated with decreased expression of the phosphatase and tensin homolog deleted on chromosome ten (PTEN). Therefore, it is important to identify novel molecular mechanisms to suppress chemoresistance in lung adenocarcinoma cells. Paclitaxel- and cisplatin-resistant A549 lung carcinoma cell derivatives were developed by long-term serial culture. The metastatic properties of the cells were assessed using wound-healing assays, migration assays, invasion assays, morphological examination, and western blot analysis/RT-PCR of genes associated with the epithelial-mesenchymal transition (EMT). To identify novel regulators of EMT in A549 cells, differentially expressed miRNAs in drug-resistant cells were identified by microarray analysis. The role of miR-181a was established by transfection with specific mimic and inhibitor followed by functional assays. Luciferase assays were performed to assess the ability of miR-181a to target the PTEN promoter, and regulation of PTEN expression by miR-181a was assessed by western blot analysis and RT-PCR. Paclitaxel- and cisplatin-resistant A549 cells acquired metastatic properties and EMT phenotype and had reduced PTEN expression as compared to sensitive cells. miR‑181a was identified as a differentially expressed miRNA in drug-resistant A549 cells, and miR-181a mimic and inhibitor were shown to affect migration, invasion, morphology and expression of EMT-associated genes. PTEN was identified as a direct target of miR-181a. Our findings demonstrate that miR-181a expression in lung adenocarcinoma is associated with EMT progression, potentially through targeting of PTEN. Regulation of miR-181a may provide a novel strategy for overcoming resistance to paclitaxel and cisplatin in lung adenocarcinoma.
3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.
MicroRNA-10b (miR-10b) has been reported to play an important role in some types of cancer, but the effects and possible mechanisms of action of miR-10b in the metastasis of nasopharyngeal carcinoma cells (NPC) have not been explored. The aim of the present study was to investigate the function of miR-10b in nasopharyngeal carcinoma and to determine the molecular mechanisms underlying its action. The MTT assay was used to assess proliferation of CNE-2Z cells. Wound healing and transwell migration assays were applied to assess cell migration and invasion, while and expression of E-cadherin and MMP-9 were detected using Western blot analysis. Real-time PCR was employed to detect the expression of genes related to migration and invasion and the 2 -ΔΔCt method was used to calculate the degree of expression. MTT assay showed the expression of miR-10b to have no effect on the proliferation of NPC cell lines. The wound healing assay showed that miR-10b mimics promoted the mobility and invasion of NPC cell lines. Inhibitors of miR-10b reduced the ability of NPC cell lines to migrate and invade. In addition, the expression of genes related to migration and invasion, such as E-cadherin, vimentin, and MMP-9, were confirmed to be different in the CNE-2Z NPC cell line transfected with miR-10b mimics and with miR-10b inhibitors. In the present study, miR-10b was found to upregulate the expression of MMP-9 and knockdown of miR-10b was found to significantly downregulate the expression of E-cadherin. On the whole, these results showed that miR-10b plays an important role in the invasion and metastasis of NPC cells.
Objective Emerging evidence suggests that brain angiotensin-(1–7) (Ang-(1–7)) deficiency contributes to the pathogenesis of Alzheimer’s disease (AD). Meanwhile, our previous studies revealed that restoration of brain Ang-(1–7) levels provided neuroprotection by inhibition of inflammatory responses during AD progress. However, the potential molecular mechanisms by which Ang-(1–7) modulates neuroinflammation remain unclear. Materials and Methods APP/PS1 mice were injected intraperitoneally with AVE0991 (a nonpeptide analogue of Ang-(1–7)) once a day for 30 consecutive days. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed. Since astrocytes played a crucial role in AD-related neuroinflammation whilst long noncoding RNAs (lncRNAs) were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were isolated for high-throughput lncRNA sequencing to identify the most differentially expressed lncRNA following AVE0991 treatment. Afterward, the downstream pathways of this lncRNA in the anti-inflammatory action of AVE0991 were investigated using primary astrocytes. Results AVE0991 rescued spatial cognitive impairments and alleviated neuronal and synaptic damage in APP/PS1 mice. The levels of Aβ 1-42 in the brain of APP/PS1 mice were not affected by AVE0991. By employing high-throughput lncRNA sequencing, our in vitro study demonstrated for the first time that AVE0991 suppressed astrocytic NLRP3 inflammasome-mediated neuroinflammation via a lncRNA SNHG14-dependent manner. SNHG14 acted as a sponge of miR-223-3p while NLRP3 represented a direct target of miR-223-3p in astrocytes. In addition, miR-223-3p participated in the AVE0991-induced suppression of astrocytic NLRP3 inflammasome. Conclusion Our results suggest that Ang-(1–7) analogue AVE0991 inhibits astrocyte-mediated neuroinflammation via SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in APP/PS1 mice. These findings reveal the underlying mechanisms by which Ang-(1–7) inhibits neuroinflammation under AD condition and uncover the potential of its nonpeptide analogue AVE0991 in AD treatment.
Metformin has been shown to be useful in reducing insulin resistance by restoring sensitivity. Recent evidence suggests that metformin might also possess anti-tumour activity. This study aimed to investigate the effects of cisplatin combined with metformin on the proliferation, invasion and migration of HNE1/DDP human nasopharyngeal carcinoma (NPC) cells, and to provide a new target for treating metastasis. The MTT assay was used to assess viability of HNE1/DDP cells after exposure to different concentrations of 2, 5-diaminopyrimidine-4, 6-diol (DDP; 2, 4, 8, 16, and 32 μmol·L -1 ), metformin (5, 10, 15, 20, and 25 μmol·L -1 ), and 4 μmol·L -1 of DDP combined with metformin. Wound healing and transwell migration assays were performed to assess cell migration and invasion, and expression of E-cadherin and MMP-9 was detected using Western blotting. MTT assay results showed that DDP could inhibit the proliferation of HNE1/DDP cells in a time-and concentration-dependent manner, with an IC50 of 32.0 μmol·L -1 at 24 h (P < 0.05), whereas low concentrations of DDP had almost no inhibitory effects on cell invasion and migration. DDP combined with metformin significantly inhibited cell invasion and migration. In addition, genes related to migration and invasion, such as those of E-cadherin and MMP-9, showed differential expression in the NPC cell line HNE1/DDP. In the present study, with an increasing concentration of metformin, the expression of MMP-9 was downregulated whereas that of E-cadherin was significantly upregulated. Taken together, our results show that cisplatin combined with metformin has effects on proliferation, invasion, and migration of human NPC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.