N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1-NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collectively, our results suggest that the aberrant methylation of CXCL12 frequently occurs in the down-regulation of CXCL12 in gastric cancers and that it may play a role in the metastasis of gastric cancer.
Our results indicate that aberrant SOX11 gene promoter methylation may underlie its down-regulation in GC. SOX11 gene promoter hyper-methylation may serve as a biomarker to predict the clinical outcome of GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.