Shale ash (SA) as the carrier, the ratio of Cu to Ni in the Cu-Ni transition metal salt being, respectively, 1 : 0, 2 : 1, 1 : 1, 1 : 2, 0 : 1, the double transition metal salt catalyst (CumNin/SA) was prepared to explore the effect of such catalysts on the pyrolysis behavior and characteristics of Fushun OS. The research results show that the temperature ( T max ) corresponding to the maximum weight loss rate decreased by 12.9°C, 4.0°C, and 3.6°C; and the apparent activation energy decreased by 35.2%, 33.9%, and 29.6%, respectively, after adding catalysts Cu0Ni1/SA in pyrolysis. The addition of Cu0Ni1/SA and Cu2Ni1/SA further improves the shale oil (SO) yield of 3.5% and 3.1%, respectively. Cu0Ni1/SA produces more aromatic hydrocarbons, which, however, weakens the stability of SO and is of toxicity in use. After analyzing the pyrolysis product—semicoke (SC) and SO—with ATR-FTIR and GC-MS methods, CumNin/SA promotes the secondary cracking and aromatization of OS pyrolysis, increasing the content of the compound of olefins and aromatics in SO, and hastening the decomposition of long-chain aliphatic hydrocarbons to short-chain aliphatic hydrocarbons.
This paper briefly describes the research status of oil shale pyrolysis technology and the main factors affecting oil shale pyrolysis, with emphasis on four kinds of commonly used catalysts: The effects of natural minerals, metal compounds, molecular sixes, and supported catalysts on the pyrolysis of oil shale were discussed. The changes of the pyrolysis mechanism and product composition of oil shale with the addition of different catalysts were discussed. Finally, the development direction of preparation of new catalysts was discussed, in order to provide a prospect for the development and utilization of unconventional and strategic alternative energy resources around the world.
The main methods of treating oily sludge at home and abroad and the current research status of oily sludge pyrolysis technology are briefly described, and four commonly used catalysts are introduced: metals, metal compounds, molecular sieves, metal-supported molecular sieves, and biomass catalysts for oily sludge. The influence of pyrolysis, the pyrolysis mechanism, and the product composition of oily sludge with the addition of different catalysts are also discussed. Finally, the development direction of preparing new catalysts and the mixed use of multiple catalysts is proposed as a theory to provide for the efficient and reasonable utilization of oily sludge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.