Background The COVID‐19 pandemic has highlighted the need for targeted local interventions given substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to the city or county level to protect patient privacy, but more granular data are necessary to identify and act upon community‐level risk factors that can change over time. Methods Individual COVID‐19 case and mortality data from Massachusetts were geocoded to residential addresses and aggregated into two time periods: “Phase 1” (March–June 2020) and “Phase 2” (September 2020 to February 2021). Institutional cases associated with long‐term care facilities, prisons, or homeless shelters were identified using address data and modeled separately. Census tract sociodemographic and occupational predictors were drawn from the 2015–2019 American Community Survey. We used mixed‐effects negative binomial regression to estimate incidence rate ratios (IRRs), accounting for town‐level spatial autocorrelation. Results Case incidence was elevated in census tracts with higher proportions of Black and Latinx residents, with larger associations in Phase 1 than Phase 2. Case incidence associated with proportion of essential workers was similarly elevated in both Phases. Mortality IRRs had differing patterns from case IRRs, decreasing less substantially between Phases for Black and Latinx populations and increasing between Phases for proportion of essential workers. Mortality models excluding institutional cases yielded stronger associations for age, race/ethnicity, and essential worker status. Conclusions Geocoded home address data can allow for nuanced analyses of community disease patterns, identification of high‐risk subgroups, and exclusion of institutional cases to comprehensively reflect community risk.
Occupational exposure to SARS-CoV-2 varies by profession, but “essential workers” are often considered in aggregate in COVID-19 models. This aggregation complicates efforts to understand risks to specific types of workers or industries and target interventions, specifically towards non-healthcare workers. We used census tract-resolution American Community Survey data to develop novel essential worker categories among the occupations designated as COVID-19 Essential Services in Massachusetts. Census tract-resolution COVID-19 cases and deaths were provided by the Massachusetts Department of Public Health. We evaluated the association between essential worker categories and cases and deaths over two phases of the pandemic from March 2020 to February 2021 using adjusted mixed-effects negative binomial regression, controlling for other sociodemographic risk factors. We observed elevated COVID-19 case incidence in census tracts in the highest tertile of workers in construction/transportation/buildings maintenance (Phase 1: IRR 1.32 [95% CI 1.22, 1.42]; Phase 2: IRR: 1.19 [1.13, 1.25]), production (Phase 1: IRR: 1.23 [1.15, 1.33]; Phase 2: 1.18 [1.12, 1.24]), and public-facing sales and services occupations (Phase 1: IRR: 1.14 [1.07, 1.21]; Phase 2: IRR: 1.10 [1.06, 1.15]). We found reduced case incidence associated with greater percentage of essential workers able to work from home (Phase 1: IRR: 0.85 [0.78, 0.94]; Phase 2: IRR: 0.83 [0.77, 0.88]). Similar trends exist in the associations between essential worker categories and deaths, though attenuated. Estimating industry-specific risk for essential workers is important in targeting interventions for COVID-19 and other diseases and our categories provide a reproducible and straightforward way to support such efforts.
Background: Chronic kidney disease of a nontraditional etiology (CKDnt) is responsible for high mortality in Central America, although its causes remain unclear. Evidence of kidney dysfunction has been observed among youth, suggesting that early kidney damage contributing to CKDnt may initiate in childhood. Methods: Urine specimens of Nicaraguan adolescents 12-23 years without CKDnt (n=136) were analyzed by proton nuclear magnetic resonance (1H-NMR) spectroscopy for 50 metabolites associated with kidney dysfunction. Urinary metabolite levels were compared by CKiD U25 estimated glomerular filtration rate (eGFR), regional CKDnt prevalence, sex, age, and family history of CKDnt using supervised statistical methods and pathway analysis in MetaboAnalyst. Magnitude of associations and changes over time were assessed through multivariable linear regression. Results: In adjusted analyses, glycine concentrations were higher among youth from high-risk regions (β=0.82, (95% CI: 0.16, 1.85); p=0.01). Pyruvate concentrations were lower among youth with low eGFR (β= -0.36; (95% CI:-0.57, -0.04); p=0.03) and concentrations of other citric acid (TCA) cycle metabolites differed by key risk factors. Over four years, participants with low eGFR experienced greater declines in 1-methylnicotinamide and 2-oxoglutarate and greater increases in citrate and guanidinoacetate concentrations. Conclusion: Urinary concentration of glycine, a molecule associated with thermoregulation and kidney function preservation, was higher among youth in high-risk CKDnt regions, suggestive of greater heat exposure or renal stress. Lower pyruvate concentrations were associated with low eGFR, and citric acid cycle metabolites like pyruvate likely relate to mitochondrial respiration rates in the kidneys. Participants with low eGFR experienced longitudinal declines in concentrations of 1-methylnicotinamide, an anti-inflammatory metabolite associated with anti-fibrosis in tubule cells. These findings merit further consideration in research on the origins of CKDnt.
Background: The COVID-19 pandemic has highlighted the need for targeted local interventions given substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to the city or county level to protect patient privacy, but more granular data are necessary to identify and act upon community-level risk factors that can change over time. Methods: Individual COVID-19 case and mortality data from Massachusetts were geocoded to residential addresses and aggregated into two time periods: “Phase 1” (March–June 2020) and “Phase 2” (September 2020–February 2021). Institutional cases associated with long-term care facilities, prisons, or homeless shelters were identified using address data and modeled separately. Census tract sociodemographic and occupational predictors were drawn from the 2015-2019 American Community Survey. We used mixed-effects negative binomial regression to estimate incidence rate ratios (IRRs), accounting for town-level spatial autocorrelation. Results: Case incidence was elevated in census tracts with higher proportions of Black and Latinx residents, with larger associations in Phase 1 than Phase 2. Case incidence associated with proportion of essential workers was similarly elevated in both Phases. Mortality IRRs had differing patterns from case IRRs, decreasing less substantially between Phases for Black and Latinx populations and increasing between Phases for proportion of essential workers. Mortality models excluding institutional cases yielded stronger associations for age, race/ethnicity, and essential worker status. Conclusions: Geocoded home address data can allow for nuanced analyses of community disease patterns, identification of high-risk subgroups, and exclusion of institutional cases to comprehensively reflect community risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.