Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the “operational modes” of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.
The p53 tumour suppressor is a transcription factor that regulates the progression of the cell through its cycle and cell death (apoptosis) in response to environmental stimuli such as DNA damage and hypoxia. Even though p53 modulates these critical cellular processes, mice that lack p53 are developmentally normal, suggesting that p53-related proteins might compensate for the functions of p53 during embryogenesis. Two p53 homologues, p63 and p73, are known and here we describe the function of p63 in vivo. Mice lacking p63 are born alive but have striking developmental defects. Their limbs are absent or truncated, defects that are caused by a failure of the apical ectodermal ridge to differentiate. The skin of p63-deficient mice does not progress past an early developmental stage: it lacks stratification and does not express differentiation markers. Structures dependent upon epidermal-mesenchymal interactions during embryonic development, such as hair follicles, teeth and mammary glands, are absent in p63-deficient mice. Thus, in contrast to p53, p63 is essential for several aspects of ectodermal differentiation during embryogenesis.
Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.
Background: Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. Methods: The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. Results: The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. Conclusions: We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.