Representing a basal branch of arachnids, scorpions are known as ‘living fossils’ that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils.
Exosomes (Exos) are nanoscale natural vehicles for transporting biomolecules to facilitate cell-tocell communication, indicating a high potential of them for delivering therapeutics/diagnostics. To improve their delivery capacity, a simple, noninvasive, and efficient strategy for functionalizing Exos with effective targeting ligands as well as elucidation of the cellular uptake mechanism of these functionalized Exos was found be to necessary, but remained a challenge. In this work, we used diacyllipid-aptamer conjugates as the targeting ligand to develop an aptamer-functionalized Exos (Apt-Exos) nanoplatform for cell type-specific delivery of molecular therapeutics. The cellular uptake mechanism of Apt-Exos was investigated in details, and distinct behavior was observed in comparison to free Exos. By combining the excellent molecular recognition capability of aptamers and the superiority of Exos as natural vehicles, Apt-Exos can efficiently deliver molecular drugs/fluorophores to target cancer cells, providing a promising delivery platform for cancer theranostics.
We explore the interactions between a fluorescein (FAM)-labeled single-stranded DNA (P), graphene oxide (GO), and a cationic conjugated polymer, poly [(9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-fluorenylene phenylene dibromide] (PFP). It is found that the fluorescence change of P-GO-PFP system is dependent on the addition order of P and PFP. When adding PFP into P/GO complex, the fluorescence resonance energy transfer (FRET) from PFP to P is inefficient. If P is added to PFP/GO complex, efficient FRET is obtained. This may be attributed to the equal binding ability for P and PFP to GO. The results of time-resolved fluorescence and fluorescence anisotropy support the different fluorescent response under different addition order of P and PFP to GO. Based on the above phenomenon, we demonstrate a method to reduce the high background signal of a traditional PFP-based DNA sensor by introducing GO. In comparison to the use of single PFP, the combination of PFP with GO-based method shows enhanced sensitivity with a detection limit as low as 40 pM for target DNA detection.
An in-situ reduction method has been reported to prepare gold nanoparticles (GNPs) of 40–110 nm by using the green reducing agents of proteins, which are activated by H2O2 and the superoxide anion (). The protein of collagen turns HAuCl4 to the aqueous Au(I) ainions, which are further reduced by other proteins to be highly monodispersed and spherical GNPs of different sizes. The GNPs reduced by different proteins are found to be with the exposed {100} facets, the distinctive UV-vis absorption spectra and various colors (See Fig. 1). By means of extracting the color responses, such as red, green and blue (RGB) alterations, an in-situ reduction method-based multidimensional sensing platform is fabricated in the process of GNPs synthesis. Without further modification of GNPs, nine common proteins are found to be well detected and discriminated at different concentrations. Moreover, this sensing platform also demonstrates great potentials in qualitative and semiquantitative analysis on the individuals of these proteins with high sensitivity. Furthermore, the validation of this multidimensional sensing platform has been carried out by analysis on the spiked proteins in human urine and the target proteins in complex matrix (e.g. lysozyme in human tear).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.