The low energy transition efficiency of electromagnetic ultrasonic transducer (EMAT) is a common problem in practical application. For the purpose of enhancing the amplitude of the received signal, an improved double-coil bulk wave EMAT is proposed for the thickness measurement of metallic block. This new configuration of magnets consists of a solid cylindrical magnet and a ring-shaped magnet encircling the outer side of the solid cylindrical one. A double-coil was applied instead of a single spiral-coil. Numerical simulations were performed to analyze and optimize the proposed configuration of the EMAT by the 2-D axisymmetric finite element model (FEM). The experiment effectively verifies the rationality of the new configuration and the feasibility of improving the signal strength.
The low energy conversion efficiency of electromagnetic acoustic transducers (EMATs) is a critical issue in nondestructive testing applications. To overcome this shortcoming, a butterfly coil EMAT was developed and optimized by numerical simulation based on a 2−D finite element model. First, the effect of the structural parameters of the butterfly coil EMAT was investigated by orthogonal test theory. Then, a modified butterfly coil EMAT was designed that consists of three−square permanent magnets with opposite polarity (TSPM−OP) to enhance the signal amplitude. Finally, the signal amplitude obtained from the three types of EMATs, that is, the traditional EMAT, the EMAT optimized by orthogonal test theory, and the modified EMAT with TSPM−OP, were analyzed and compared. The results show that the signal amplitude achieved by the modified butterfly coil EMAT with TSPM−OP can be increased by 4.97 times compared to the traditional butterfly coil EMAT.
The energy conversion of electromagnetic acoustic transducers (EMATs) is typically lower, which seriously restricts the application of EMATs in the field of non-destructive testing and evaluation. In this work, parameters of surface wave EMATs, including structural parameters and electrical parameters, are investigated using the orthogonal test method to improve the transducer’s energy conversion efficiency. Based on the established finite element 2-D model of EMATs, the amplitude of the displacement components at the observation point of a plate is the optimization objective to be maximized with five parameters pertaining to the magnets, meander-line coils, and excitation signal as design variables. Results show that the signal amplitude of EMATs is 3.48 times on in-plane and 3.49 times on out-of-plane, respectively, compared with the original model. Furthermore, a new material (amorphous nanocrystalline material of type 1K107) is applied to optimize the magnetic circuit of EMATs and enhance the eddy current in an aluminum plate to increase the signal amplitude. Finally, the signal amplitudes obtained from the three types of models, that is, the original one, the optimization one after an orthogonal test, and the optimization one with the addition of magnetic concentrators, are analyzed and compared, indicating that the signal amplitude, compared with the original one, is 6.02 times on in-plane and 6.20 times on out-of-plane, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.