Graphene/reduced graphene oxide (rGO) modification has been demonstrated to be an efficient route to improve the photocatalytic performance of various photocatalysts by promoting the effective separation of photogenerated electrons and holes. It is highly required to develop facile and environmental-friendly methods for the preparation of graphene-based photocatalytic materials. In this study, the Ag/AgCl/rGO heterostructure photocatalyst was fabricated by a mild oxidization reaction of hydrothermally prepared Ag/rGO in FeCl3 solution. It was found that the reduction of graphene oxide (GO) was accompanied with the in situ formation of metallic Ag in a Ag[(NH3)2](+)-immobilized GO solution during hydrothermal treatment, while the following in situ oxidation of metallic Ag by FeCl3 solution resulted in the formation of strongly coupled Ag/AgCl/rGO heterostructure photocatalyst. The photocatalytic experimental results indicated that all the resultant Ag/AgCl/rGO nanocomposite photocatalysts exhibited a much higher photocatalytic activity than the Ag/AgCl and physically mixed Ag/AgCl/rGO composite, and the Ag/AgCl/rGO (3.2 wt % rGO) showed the highest photocatalytic performance. The enhanced photocatalytic performance of Ag/AgCl/rGO heterostructures can be attributed to the cooperation effect of the effective separation of photogenerated carriers via strongly coupled rGO cocatalyst and the enrichment of organic molecules on the rGO nanosheets. Considering the facile preparation and its high photocatalytic activity, it is possible for the present Ag/AgCl/rGO nanocomposites to be widely applied in various fields such as air purification and wastewater treatment.
Background: Larval molting and metamorphosis are important physiological processes in the life cycle of the holometabolous insect. We used suppression subtractive hybridization (SSH) to identify genes differentially expressed during larval molting and metamorphosis.
Telocytes (TCs), a distinct interstitial cell population, have been identified in the uterus, oviduct and placenta, with multiple proposed potential biological functions. Their unique structure allows them to form intercellular junctions with various immunocytes, both in normal and diseased tissues, suggesting a potential functional relationship with the local immune response. It has been hypothesized that through direct heterocellular junctions or indirect paracrine effects, TCs influence the activity of local immunocytes that are involved in the inflammatory process and in immune‐mediated reproductive abnormalities. However, no reliable cytological evidence for this hypothesis is currently available. In this study, we cultured primary murine uterine TCs and collected TC conditioned media (TCM). Mouse peritoneal macrophages (pMACs) were co‐cultured for 48 hrs with TCM or with DMEM/F12 or lipopolysaccharide (LPS) as negative and positive controls, respectively. Normal uterine TCs with a typical structure and a CD‐34‐positive/vimentin‐positive/c‐kit‐negative immunophenotype were observed during culture. Morphologically, TCM‐treated pMACs displayed an obvious activation/immunoresponse, in contrast to over‐stimulation and cell death after LPS treatment and no sign of activation in the presence of DMEM/F12. Accordingly, a cell counting kit 8 (CCK‐8) assay indicated significant activation of pMACs by TCM and LPS compared to DMEM/F12, thus supporting the marked morphological differences among these groups of cells. Furthermore, within a panel of macrophage‐derived cytokines/enzymes, interleukin‐6 (IL‐6) and inducible nitric oxide synthase were significantly elevated in TCM‐treated pMACs; tumour necrosis factor α, IL1‐R1, and IL‐10 were slightly, but significantly, up‐regulated; and no changes were observed for transforming growth factor‐β1, IL‐1β, IL‐23α and IL‐18. Our results indicate that TCs are not simply innocent bystanders but are rather functional players in the activation of pMACs; they trigger and maintain the immune response, likely through indirect paracrine effects. Thus, we provide preliminary in vitro evidence of immunoregulatory and immunosurveillance roles for TCs.
BackgroundTelocytes (TCs), a recently discovered novel type of interstitial cells, were also found in a wide variety of human and mammalian reproductive organs/tissues, including uterus, oviduct and placenta. Previously, we demonstrated that TCs-conditioned media was capable of activating peritoneal macrophages (pMACs) through paracrine effects. This study investigates the hypothesis that direct interaction of TCs with pMACs will also play a significant role in immunoregulation of pMACs.MethodsTCs and pMACs were derived from the uterus and intraperitoneal cavity of female BALB/c mice, respectively. TCs were identified by immunofluorescence and then co-cultured directly with pMACs for 24 h without added cytokines, to observe the in vitro biological behavior of pMACs. We used histochemical staining to study morphology and mitochondrial metabolism of pMACs, scanning electron microscopy to study heterocellular junctions, flow cytometry to investigate mitochondrial membrane potential (ΔΨm) and apoptosis, and transwell chambers to study invasion ability. Student-t test was used accordingly.ResultsPresently, TCs with typical structure and immunophenotype of double CD-34-positive/vimentin-positive were successfully isolated. pMACs co-cultured with TCs showed obviously morphological activation, with enhanced energy metabolism (P < 0.05). Meanwhile, direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs. Furthermore, TCs treatment markedly reduced the depletion of ΔΨm in co-cultured pMACs (all P < 0.05), and inhibited their apoptosis (P < 0.05). Functionally, pMACs co-cultured with TCs showed enhanced invasion ability (P < 0.05).ConclusionsDirect physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs, presumably responsible for the observed novel efficient way of pMACs activation via mitochondrial signaling pathway. TCs-educated pMACs might be a promising way to restore the defective immunosurveillance in endometriosis (EMs), led to the enhanced treatment efficacy of EMs in a simple and clinically feasible fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.