In this paper, we propose a multiagent collaboration decision-making method for adaptive intersection complexity based on hierarchical reinforcement learning—H-CommNet, which uses a two-level structure for collaboration: the upper-level policy network fuses information from all agents and learns how to set a subtask for each agent, and the lower-level policy network relies on the local observation of the agent to control the action targets of the agents from each subtask in the upper layer. H-CommNet allows multiagents to complete collaboration on different time scales, and the scale is controllable. It also uses the computational intelligence of invehicle intelligence and edge nodes to achieve joint optimization of computing resources and communication resources. Through the simulation experiments in the intersection environment without traffic lights, the experimental results show that H-CommNet can achieve better results than baseline in different complexity scenarios when using as few resources as possible, and the scalability, flexibility, and control effects have been improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.