This study aimed to provide systematic evidence for the association between multiorgan dysfunction and COVID-19 development. Several online databases were searched for articles published until May 13, 2020. Two investigators independently selected trials, extracted data, and evaluated the quality of individual trials. Single-arm meta-analysis was performed to summarize the clinical features of confirmed COVID-19 patients. Fixed effects meta-analysis was performed for clinically relevant parameters that were closely related to the patients' various organ functions. A total of 73 studies, including 171,108 patients, were included in this analysis. The overall incidence of severe COVID-19 and mortality were 24% (95% confidence interval [CI], 20%-28%) and 2% (95% CI, 1%-3%), respectively. Patients with hypertension (odds ratio [OR] = 2.40; 95% CI, 2.08-2.78), cardiovascular disease (CVD) (OR = 3.54; 95% CI, 2.68-4.68), chronic obstructive pulmonary disease (COPD) (OR=3.70; 95% CI, 2.93-4.68), chronic liver disease (CLD) (OR=1.48; 95% CI, 1.09-2.01), chronic kidney disease (CKD) (OR = 1.84; 95% CI, 1.47-2.30), chronic cerebrovascular diseases (OR = 2.53; 95% CI, 1.84-3.49) and chronic gastrointestinal (GI) disease (OR = 2.13; 95% CI, 1.12-4.05) were more likely to develop severe COVID-19. Increased levels of lactate dehydrogenase (LDH), creatine kinase (CK), highsensitivity cardiac troponin I (hs-cTnI), myoglobin, creatinine, urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin were highly associated with severe COVID-19. The incidence of acute organ injuries, including acute cardiac injury (ACI); (OR = 11.87; 95% CI, 7.64-18.46), acute kidney injury (AKI); (OR=10.25; 95% CI, 7.60-13.84), acute respiratory distress syndrome (ARDS); (OR=27.66; 95% CI, 18.58-41.18), and acute cerebrovascular diseases (OR=9.22; 95% CI, 1.61-52.72) was more common in patients with severe COVID-19 than in patients with non-severe COVID-19. Patients with a history of organ dysfunction are more susceptible to severe conditions. COVID-19 can aggravate an acute multiorgan injury.
Nature is the most abundant source for novel drug discovery. Lycorine is a natural alkaloid with immense therapeutic potential. Lycorine is active in a very low concentration and with high specificity against a number of cancers both in vivo and in vitro and against various drug-resistant cancer cells. This review summarized the therapeutic effect and the anticancer mechanisms of lycorine. At the same time, we have discussed the pharmacology and comparative structure-activity relationship for the anticancer activity of this compound. The researches outlined in this paper serve as a foundation to explain lycorine as an important lead compound for new generation anticancer drug design and provide the principle for the development of biological strategies to utilize lycorine in the treatment of cancers.
Multiple myeloma (MM) is largely incurable and drug-resistant. Novel therapeutic approaches such as inhibiting autophagy or rational drug combinations are aimed to overcome this issue. In this study, we found that lycorine exhibits a promising anti-proliferative activity against MM in vitro and in vivo by inhibiting autophagy. We identified High mobility group box 1 (HMGB1), an important regulator of autophagy, as the most aberrantly expressed protein after lycorine treatment and as a critical mediator of lycorine activity. Gene expression profiling (GEP) analysis showed that higher expression of HMGB1 is linked with the poor prognosis of MM. This correlation was further confirmed in human bone marrow CD138+ primary myeloma cells and MM cell lines. Mechanistically, proteasomal degradation of HMGB1 by lycorine inhibits the activation of MEK-ERK thereby decreases phosphorylation of Bcl-2 resulting in constitutive association of Bcl-2 with Beclin-1. In addition, we observed higher HMGB1 expression in bortezomib resistant cells and the combination of bortezomib plus lycorine was highly efficient in vitro and in vivo myeloma models as well as in re-sensitizing resistant cells to bortezomib. These observations indicate lycorine as an effective autophagy inhibitor and reveal that lycorine alone or in combination with bortezomib is a potential therapeutic strategy.
Autophagy is a process that leads to the degradation of unnecessary or dysfunctional cellular components and long-lived protein aggregates. Erythropoiesis is a branch of hematopoietic differentiation by which mature red blood cells (RBCs) are generated from multi-potential hematopoietic stem cells (HSCs). Autophagy plays a critical role in the elimination of mitochondria, ribosomes and other organelles during erythroid terminal differentiation. Here, the modulators of autophagy that regulate erythroid differentiation were summarized, including autophagy-related (Atg) genes, the B-cell lymphoma 2 (Bcl-2) family member Bcl-2/adenovirus E1B 19 kDa interacting protein 3-like (Nix/Binp3L), transcription factors globin transcription factor 1 (GATA1) and forkhead box O3 (FoxO3), intermediary factor KRAB-associated protein1 (KAP1), and other modulators, such as focal adhesion kinase family-interacting protein of 200-kDa (FIP200), Ca2+ and 15-lipoxygenase. Understanding the modulators of autophagy in erythropoiesis will benefit the autophagy research field and facilitate the prevention and treatment of autophagy-related red blood cell disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.