Exosomes, which are lipid membrane-bound nanovesicles (50-150 nm in diameter), have aroused extensive attention for their potential applications in invasive molecular and stand for a new therapeutic delivery system. However, they are limited by poor targeting ability and a lack of efficient isolation techniques. Here, we present a three-dimensional nanostructured microfluidic chip, in which arrays of micropillars were functionalized with crisscrossed multiwall carbon nanotubes by chemical deposition, to capture exosomes with high efficiency through a combination of a specific recognition molecule (CD63) and the unique topography of the nanomaterials. As is proven, this nanostructured interface substantially made the immuno capturing of exosomes more efficient. A high percentage of intact vesicles <150 nm were readily purified. As a further application, we added functionality to the exosomes by a chemical editing approach for targeted drug delivery. Donor cells were labeled chemically with dual ligands (biotin and avidin) in the phospholipid membrane and encapsulated drugs in the cytosol. Though the engineered donor cells secreted exosomes, the dual ligands, together with the drugs, were inherited by the exosomes, which were then isolated with the microfluidic chip. Then, the isolated exosomes were used as drug delivery vehicles and showed strong targeting abilities to tumor cells and highly efficient receptor-mediated cellular uptake when exposed to recipient cells. Thus, the anticancer effect of chemotherapeutic drugs was improved significantly. It suggested that this platform could provide a useful tool for isolating intact exosomes with high efficiency and exploiting their natural carrier function to deliver chemotherapeutic drugs to tumor cells with increased efficacy and targeting capacity.
Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer-targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell-assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand-mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near-infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future.
Microfluidic technology has shown advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. Coupling microfluidic chips to mass spectrometry (Chip-MS) can greatly improve the overall analytical performance of MS-based approaches and expand their potential applications. In this article, we review the advances of Chip-MS in the past decade, covering innovations in microchip fabrication, microchips coupled to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS. Development of integrated microfluidic systems for automated MS analysis will be further documented, as well as recent applications of Chip-MS in proteomics, metabolomics, cell analysis, and clinical diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.