Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 downregulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 downregulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens. Improving meat quality has long been a goal of broiler breeding programs, especially for Chinese native breeds 1,2. However, meat quality is difficult to define because it is a complex trait influenced by numerous factors 3. As the main tissue determining meat quality, skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, varying in their biochemical and structural characteristics. Previous studies have found that different types of muscle fibers can influence meat quality traits, including meat color, tenderness, water-holding capacity, juiciness, and flavor 4,5. In chickens, myofiber can be divided into red and white fibers, which are referred to as oxidative (type I and IIA) and glycolytic fibers (type IIB), respectively. Oxidative fibers exhibit slow contractility and oxidative metabolism based on mitochondrial oxidative phosphorylation, whereas glycolytic fibers have fast contractility and glycolytic metabolism 6,7. Although the differences between various muscle fiber types in physiology and functionality have been well studied, the molecular regulation of their specification and maintenance in chickens remains largely unknown 8,9. miRNAs are highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level in most biological processes. Emerging evidence has demonstrated that miRNAs are involved in
Based on the structure analysis and the working principle of cylindrical giant magnetostricve actuator (CGMA) for ball screw preload, a thermal error suppression method using oil cooling system to control the temperature is proposed. Firstly, the heat transfer model and thermal circuit model of CGMA are established; next, the steady-state temperature model and the thermal expansion displacement model of cylindrical giant magnetostrictive material (CGMM) are obtained according to the heat-transfer rules and loop analysis method in circuit analysis; finally, the design parameters of the oil-cooling temperature control system are determined by combining thermal circuit model analysis with finite element simulation analysis. Such optimization method saves a lot of computation and provides a simple way for the design of oil cooling structure. In addition, a test platform for the CGMA is established. The experimental results indicate that the measured temperatures are in good agreement with the simulation results under forced oil cooling, and the relative error is less than 5%, which proves the rationality of the temperature control system. Moreover, the output accuracy and stability of the CGMA is significantly improved with proposed oil cooling method, which further confirms the thermal error suppression method is effective. As a result, this study provides a basis for the application of CGMA in the precise adjustment of double-nut ball screw preload.
To investigate the population structure and genetic diversity of indigenous chicken breeds in Guizhou, a total of 150 individual samples were collected from 12 breeds, including seven local chicken breeds in Guizhou Province, three Chinese native breeds found in other provinces, and two commercial breeds. The genotype datasets were obtained using a 50K single nucleotide polymorphism array method, and then a series of population analyses were performed. The obtained population parameters and linkage disequilibrium decay indicated a higher degree of genetic diversity in Guizhou chickens than in commercial breeds. Two Guizhou local breeds, Wumeng black-bone and Weining, were clustered with a breed from a neighboring province, Xinwen blackbone, which exhibited similar ancestral composition patterns. A newly found breed, Wumeng crested, had high genetic diversity and displayed genetic differences from other Guizhou breeds. These findings provide insight into the establishment of efficient conservation and utilization programs for Guizhou chicken breeds.
The comb of the male is an important secondary sexual characteristic. Although quantitative trait loci (QTLs) related to comb size have been identified, molecular mechanisms underlying this trait remain mostly unknown. In this study, RNA sequencing (RNA-seq) was employed to compare whole transcriptomic differences between two groups of Partridge Shank chickens that are divergent in comb sizes. A total of 563 differentially expressed genes (DEGs) were identified, including 277 up-regulated and 286 down-regulated DEGs. According to the animal QTL database, eight DEGs including BMP2 and CHADL matching the reported QTLs were associated with the comb size. Functional annotation analysis revealed that DEGs were involved in cell communication and calcium signaling. Protein-protein interaction network analysis showed that STK32A, PIK3R1, EDN1, HSPA5, and HSPA8 have an impact on comb growth. Moreover, potential alternative splicing events and single nucleotide polymorphisms were also identified. Our data provide a source for identifying genes and pathways with functions critical to comb size and accelerate studies involving molecular mechanisms of this sexual ornament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.