Edited by Tamas DalmayKeywords: miR-26b SLC7A11 Apoptosis Breast cancer a b s t r a c t MicroRNAs are widely dysregulated in various cancers and integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. Here, we show that miR-26b, which is down-regulated in human breast cancer specimens and cell lines, impairs viability and triggers apoptosis of human breast cancer MCF7 cells. SLC7A11 is identified as a direct target of miR-26b and its expression is remarkably increased in both breast cancer cell lines and clinical samples. Furthermore, SLC7A11 silence mimics miR-26b-aroused viability impairment and apoptosis in MCF7 cells. Our studies reveal a protective role of miR-26b in the molecular etiology of human breast cancer by promoting apoptosis.
Background
Non-small cell lung carcinomas (NSCLC) are prevalent, lethal cancers with especially grim prospects due to late-stage detection and chemoresistance. Circular RNAs (circRNAs) are non-coding RNAs that participate in tumor development. However, the role of circRNAs in NSCLC is not well known. This study investigated the role of one circRNA – circPTPRA– in NSCLC and characterized its molecular mechanism of action.
Methods
circPTPRA expression was analyzed in human NSCLC tumors and matched healthy lung tissue. We performed functional characterization in NSCLC cell lines and a mouse xenograft model of NSCLC to elucidate the molecular role of circPTPRA in epithelial-mesenchymal transitioning (EMT). We also assessed the regulatory action of circPTPRA on the microRNA miR-96-5p and its target the tumor suppressor Ras association domain-containing protein 8 (RASSF8).
Findings
circPTPRA was significantly downregulated in NSCLC tumors relative to matched healthy lung tissue. Lower circPTPRA levels correlated with metastasis and inferior survival outcomes in NSCLC patients. circPTPRA suppressed EMT in NSCLC cell lines and reduced metastasis in the murine xenograft model by sequestering miR-96-5p and upregulating RASSF8. Correlation analyses in patient-derived NSCLC tumor specimens supported the involvement of the circPTPRA/miR-96-5p/RASSF8/E-cadherin axis dysregulation in NSCLC tumor progression.
Interpretation
circPTPRA suppresses EMT and metastasis of NSCLC cell lines by sponging miR-96-5p, which upregulates the downstream tumor suppressor RASSF8. The circPTPRA/miR-96-5p/RASSF8/E-cadherin axis can be leveraged as a potential treatment avenue in NSCLC.
Fund
The Key research and development projects of Anhui Province (201904a0720079), the Natural Science Foundation of Anhui Province (1908085MH240), the Graduate Innovation Program of Bengbu Medical College (Byycx1843), the National Natural Science Foundation of Tibet (XZ2017ZR-ZY033) and the Science and Technology Project of Shannan (SNKJYFJF2017-3) and Academic Subsidy Project for Top Talents in Universities of Anhui in 2019 (gxbjZD16)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.