Because container terminals are facing pressure to achieve carbon neutrality in China, saving energy has become an important objective of container terminals. This paper analyzed the movement path of containers between the quay carne and the yard, and found that paths in the vertical direction existed, requiring unnecessary energy consumption. To solve the unnecessary energy consumption problem, a completely new work mode called the high platform operation mode was proposed. In this new mode, a high platform is built above the yard and container trucks drive onto the high platform. By building an energy consumption model to compare the energy consumption of the traditional and new modes, we found that the new mode is able to save 1.478 kWh of electricity compared to the traditional mode when handling one container. A terminal company in Tianjin Port was taken as an example to examine and validate the efficiency of the proposed mode. The computational results indicate that the electricity saved in 12 years would be able to cover the cost of building the high platform, meaning that the new mode could reduce container terminals’ energy consumption and accelerate the achievement of carbon neutrality.
Despite a number of adverse factors, China’s steel industry has maintained a rapid growth trend. China continues to consume two-thirds of the world’s iron ore, the majority of which is imported. In this context, Chinese steel companies have begun to consider integrating their supply chains to increase efficiency and lower costs. However, the increasingly volatile international environment makes this an extremely risky proposition. As a result, the issue of how Chinese steel producers should participate in global supply chain integration has emerged as a critical research question that requires investigation. In this paper, we examine the supply chain integration problem using a typical China–Australia steel trade as an example. Specifically, we discuss in detail whether relevant firms should continue to promote supply chain integration in the Chinese–Australian steel industry, as well as the decision boundary of influence, using evolutionary game theory and policy risk cost factors. The empirical analysis demonstrates that policy risk has a range of effects on different types of steel firms. Even when international tensions are considered, smaller steel companies may retain a greater willingness to integrate their supply chains. Overall, the above findings can provide necessary decision support for enterprises to formulate supply chain management strategies.
Choosing new energy vehicles for travel, especially electric vehicles, is an important component of building a low-carbon urban transportation system. However, the charging need of electric vehicle users is still constrained by the unreasonable layout and insufficient supply of public charging piles in cities. Private charging pile sharing, as an alternative policy tool, can play a beneficial role in solving this problem. However, it needs decision-makers in urban transportation to take corresponding measures to promote. This paper constructs an evolutionary game model to study the decision behavior of participants in a private pile-sharing platform. Through numerical simulation analysis, it is found that under most parameter conditions, the government tends to establish a shared charging pile platform based on public interests. Private charging pile owners are influenced by the relationship between the cost of supply modification and revenue, and they tend to join the shared platform when they expect to recover the modification cost. The research conclusions of this paper will provide support for exploring how participants make decisions to maximize overall benefits in the development of low-carbon urban transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.