Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.
The Epidermal Growth Factor Receptor (EGFR) is upregulated in numerous human cancers. Inhibition of EGFR signaling induces autophagy in tumor cells. Here we report an unanticipated role for the inactive EGFR in autophagy initiation. Inactive EGFR interacts with the oncoprotein LAPTM4B that is required for the endosomal accumulation of EGFR upon serum starvation. Inactive EGFR and LAPTM4B stabilize each other at endosomes and recruit the exocyst subcomplex containing Sec5. We show that inactive EGFR, LAPTM4B, and the Sec5 subcomplex are required for basal and starvation induced autophagy. LAPTM4B and Sec5 promote EGFR association with the autophagy inhibitor Rubicon, which in turn disassociates Beclin 1 from Rubicon to initiate autophagy. Thus, the oncoprotein LAPTM4B facilitates the role of inactive EGFR in autophagy initiation. This pathway is positioned to control tumor metabolism and promote tumor cell survival upon serum deprivation or metabolic stress.
Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers.
Lysosomal dysfunction has been increasingly linked to disease and normal ageing 1 , 2 . Lysosomal membrane permeabilization (LMP), a hallmark of lysosome-related diseases, can be triggered by diverse cellular stressors 3 . Given the damaging contents of lysosomes, LMP must be rapidly resolved, although the underlying mechanisms are poorly understood. Here, using an unbiased proteomic approach, we show that LMP stimulates a phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway for rapid lysosomal repair. Upon LMP, phosphatidylinositol-4 kinase type 2α (PI4K2A) accumulates rapidly on damaged lysosomes, generating high levels of the lipid messenger phosphatidylinositol-4-phosphate. Lysosomal phosphatidylinositol-4-phosphate in turn recruits multiple oxysterol-binding protein (OSBP)-related protein (ORP) family members, including ORP9, ORP10, ORP11 and OSBP, to orchestrate extensive new membrane contact sites between damaged lysosomes and the endoplasmic reticulum. The ORPs subsequently catalyse robust endoplasmic reticulum-to-lysosome transfer of phosphatidylserine and cholesterol to support rapid lysosomal repair. Finally, the lipid transfer protein ATG2 is also recruited to damaged lysosomes where its activity is potently stimulated by phosphatidylserine. Independent of macroautophagy, ATG2 mediates rapid membrane repair through direct lysosomal lipid transfer. Together, our findings identify that the PITT pathway maintains lysosomal membrane integrity, with important implications for numerous age-related diseases characterized by impaired lysosomal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.