In this note, we prove the Bogomolov's inequality over a reduced, compact, irreducible, Kähler complex space that is smooth in codimension 2. The proof is obtained by a reduction to the smooth case, using Hironaka's resolution of singularities.
In this article, we investigate an axiomatic approach introduced by Grivaux for the study of rational Bott-Chern cohomology, and use it in that context to define Chern classes of coherent sheaves. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. In the general case of complex spaces, the Poincaré and Dolbeault-Grothendieck lemmas are not always valid. For this reason, and to simplify the exposition, we only consider non singular complex spaces. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.