Transverse mode instability (TMI) is one of the main limiting factors in kW-level fiber lasers. Unlike fiber amplifiers, TMI in fiber laser oscillators attracts less attention from researchers. In this work, we construct an all-fiber ytterbium-doped laser oscillator and investigate the performance in co-pumping and bidirectional-pumping configurations, respectively. In the co-pumping scheme, TMI occurs at ~1.6kW and restricts further output power scaling. Different from the characteristic of dynamic TMI in fiber amplifiers, quasi-static TMI is observed in the laser oscillator. Details of the temporal characteristic around the TMI threshold are provided. In the bidirectional-pumping scheme, experimental results validate that the TMI is mitigated notably by employing bidirectional-pumping instead of co-pumping. The output laser power is further scaled to 2.5kW with a slope efficiency of 74.5% and good beam quality (M2~1.3). At the maximum power, the FWHM bandwidth of optical spectra is 5.2nm, and the Raman stokes light is ~20dB below the signal.
Multitone radiation is a promising technique to mitigate stimulated Brillouin scattering effects in narrow-linewidth fiber amplifiers. We demonstrate coherent beam combination of three two-tone fiber amplifiers using a stochastic parallel gradient descent (SPGD) algorithm. Phase control on the fiber amplifiers are performed by running the SPGD algorithm on a digital signal processor. The contrast of far-field intensity pattern of a coherently combined beam is more than 85%. Experimental results validate that a single-frequency seed laser is not indispensable for coherent beam combination in master oscillator power amplifier configuration.
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
Bessel beam is the important member of the family of non-diffracting beams and has many novel properties which can be used in many areas. However, the source of Bessel beam generated by the existing methods can be used only in a short distance due to its low power. In this paper, based on the coherent combining technology, we have proposed a method which can be used to generate a high-power Bessel beam. Even more, we give an innovative idea to form vortex phase by using discontinuous piston phase. To confirm the validity of this method, the intensity evolution of the combined beam and the Bessel-Gaussian beam at different propagation distance have been studied and compared. Meanwhile, the experimental realization has been discussed from the existing experimental result related to the coherent combining technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.